基于多头注意力卷积网络的电力负荷预测
作者:
中图分类号:

TP183

基金项目:

国家自然科学基金(61773219)


Power load prediction based on multi-headed attentional convolutional network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    预测居民用电相当于预测一个多元时间序列.针对多个传感器信号的特定窗口能够利用预测模型提取不同的特征来预测用电量.然而,由于时间序列内部特征存在着不规则的模式,包括电力属性之间隐藏的相关性,使得负荷预测准确率不高.为了提取复杂的不规则电力模式,选择性地学习时空特征以减少电力属性间的平移方差,本文提出了一种基于多头注意力的卷积循环神经网络深度学习模型.相较于单纯的时间序列模型,该模型利用卷积和加权机制对电力属性和有功功率间的局部相关性进行建模.它利用softmax函数和点积运算的注意力分数来模拟电力需求的瞬态和脉冲特性,有效地对瞬时脉冲功耗进行预测.在美国加州大学欧文分校(University of California,Irvine,UCI)家庭用电数据集共2 075 259个时间序列上的实验表明,所提出的模型与现有方法相比,准确率得到了较大提升.

    Abstract:

    Predicting residential energy consumption is tantamount to forecasting a multivariate time series.A specific window for several sensor signals can extract various features to forecast the energy consumption by using a prediction model.However,it is still a challenging task because of irregular patterns inside including hidden correlations between power attributes.In order to extract the complicated irregular energy patterns and selectively learn the spatiotemporal features to reduce the translational variance between energy attributes,we propose a deep learning model based on the multi-headed attention with the convolutional recurrent neural network.Compared with the simple time series model,the proposed model uses convolution and weighting mechanism to model the local correlation between power attributes and active power.It exploits the attention scores calculated with softmax and dot product operation in the network to model the transient and impulsive nature of energy demand,predicting the instantaneous pulse power consumption effectively.Experiments with the dataset of University of California,Irvine (UCI) household electric power consumption consisting of a total 2,075,259 time-series show that the proposed model greatly improves the prediction accuracy compared to the state-of-the-art deep learning models.

    参考文献
    [1] 陈冬沣,郑舟,吴永峰.基于时间序列的电力系统短期负荷预测问题分析[J].自动化应用,2017(11):99-101
    [2] Nejat P,Jomehzadeh F,Taheri M M,et al.A global review of energy consumption,CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)[J].Renewable and Sustainable Energy Reviews,2015,43:843-862
    [3] Chen D F,Zheng Z,Wu Y F.Analysis of power system short-term load forecasting based on time series[J].Automation Application,2017(11):99-101
    [4] Makridakis S,Spiliotis E,Assimakopoulos V.Statistical and machine learning forecasting methods:concerns and ways forward[J].PLoS One,2018,13(3):e0194889
    [5] González-Briones A,Hernández G,Corchado J M,et al.Machine learning models for electricity consumption forecasting:a review[C]//20192nd International Conference on Computer Applications&Information Security (ICCAIS).May 1-3,2019,Riyadh,Saudi Arabia.IEEE,2019:1-6
    [6] 张亚宁.基于LSTM模型的短期负荷预测[J].科技与创新,2018(12):18-21
    [7] 陈卓,孙龙祥.基于深度学习LSTM网络的短期电力负荷预测方法[J].电子技术,2018,47(1):39-41 CHEN Zhuo,SUN Longxiang.Short-term electrical load forecasting based on deep learning LSTM networks[J].Electronic Technology,2018,47(1):39-41
    [8] Rajagopalan V,Ray A.Symbolic time series analysis via wavelet-based partitioning[J].Signal Processing,2006,86(11):3309-3320
    [9] Lin J,Khade R,Li Y.Rotation-invariant similarity in time series using bag-of-patterns representation[J].Journal of Intelligent Information Systems,2012,39(2):287-315
    [10] Tso G K F,Yau K K W.Predicting electricity energy consumption:a comparison of regression analysis,decision tree and neural networks[J].Energy,2007,32(9):1761-1768
    [11] Ekonomou L.Greek long-term energy consumption prediction using artificial neural networks[J].Energy,2010,35(2):512-517
    [12] 罗嘉,王乐豪,涂姗姗,等.基于LSTM-BLS的突发气象灾害事件中公众情感倾向分析[J].南京信息工程大学学报(自然科学版),2021,13(4):477-483 LUO Jia,WANG Lehao,TU Shanshan,et al.Analysis of public sentiment tendency in sudden meteorological disasters based on LSTM-BLS[J].Journal of Nanjing University of Information Science&Technology (Natural Science Edition),2021,13(4):477-483
    [13] 王子岳,邵曦.基于S-LSTM模型利用'槽值门'机制的说话人意图识别[J].南京信息工程大学学报(自然科学版),2019,11(6):751-756 WANG Ziyue,SHAO Xi.Speaker intention recognition based on S-LSTM model and slot-gate[J].Journal of Nanjing University of Information Science&Technology (Natural Science Edition),2019,11(6):751-756
    [14] Li C D,Ding Z X,Zhao D B,et al.Building energy consumption prediction:an extreme deep learning approach[J].Energies,2017,10(10):1525
    [15] Fan C,Sun Y J,Zhao Y,et al.Deep learning-based feature engineering methods for improved building energy prediction[J].Applied Energy,2019,240:35-45
    [16] Mocanu E,Nguyen P H,Gibescu M,et al.Deep learning for estimating building energy consumption[J].Sustainable Energy,Grids and Networks,2016,6:91-99
    [17] Hinton G.Deep belief networks[J].Scholarpedia,2009,4(5):5947
    [18] Kong W C,Dong Z Y,Jia Y W,et al.Short-term residential load forecasting based on LSTM recurrent neural network[J].IEEE Transactions on Smart Grid,2019,10(1):841-851
    [19] Shi H,Xu M H,Li R.Deep learning for household load forecasting:a novel pooling deep RNN[J].IEEE Transactions on Smart Grid,2018,9(5):5271-5280
    [20] Bouktif S,Fiaz A,Ouni A L,et al.Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm:comparison with machine learning approaches[J].Energies,2018,11(7):1636
    [21] 殷豪,董朕,孟安波.基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测[J].计算机应用研究,2018,35(7):2088-2091 YIN Hao,DONG Zhen,MENG Anbo.Short-term load forecasting based on extreme learning machine optimized by particle swarm optimization integrated with chaotic crisscross optimization[J].Application Research of Computers,2018,35(7):2088-2091
    [22] 牟宏,王春义,顾洁,等.基于支持向量-分位数回归的短期负荷预测及风险分析[J].电力科学与技术学报,2016,31(3):51-56 MOU Hong,WANG Chunyi,GU Jie,et al.Short-term load forecasting and risk analysis based on support vector-quantile regression[J].Journal of Electric Power Science and Technology,2016,31(3):51-56
    [23] 庞昊,高金峰,杜耀恒.基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J].电网技术,2020,44(4):1343-1350 PANG Hao,GAO Jinfeng,DU Yaoheng.A short-term load probability density prediction based on quantile regression of time convolution network[J].Power System Technology,2020,44(4):1343-1350
    [24] Taieb S B.Machine learning strategies for multi-step-ahead time series forecasting[D].Brussels,Belgium:Free University of Brussels,2014:75-86
    [25] Kim J Y,Cho S B.Electric energy consumption prediction by deep learning with state explainable autoencoder[J].Energies,2019,12(4):739
    [26] Ronao C A,Cho S B.Human activity recognition with smartphone sensors using deep learning neural networks[J].Expert Systems with Applications,2016,59:235-244
    [27] Hebrail G,Barard A.Individual household electric power consumption data set[DS/OL].[2021-10-18].archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
    相似文献
    引证文献
引用本文

郑征,谭磊,周楠,韩军伟,高晶,翁理国.基于多头注意力卷积网络的电力负荷预测[J].南京信息工程大学学报(自然科学版),2022,14(5):535-542
ZHENG Zheng, TAN Lei, ZHOU Nan, HAN Junwei, GAO Jing, WENG Liguo. Power load prediction based on multi-headed attentional convolutional network[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(5):535-542

复制
分享
文章指标
  • 点击次数:731
  • 下载次数: 1689
  • HTML阅读次数: 85
  • 引用次数: 0
历史
  • 收稿日期:2021-11-29
  • 在线发布日期: 2022-09-29

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司