基于虚警可控梯度提升树的海面小目标检测
作者:
中图分类号:

TN959.1

基金项目:

国家自然科学基金(61901224)


Sea-surface small target detection based on false-alarm- controllable gradient boosting decision tree
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    高维特征检测是提升海面小目标探测性能的一种有效途径,其主要难点在于高维空间分类器设计.本文提出一种基于虚警可控梯度提升树(Gradient Boosting Decision Tree,GBDT)的特征检测方法.首先,从一维长时观测向量中,提取时域、频域、时频域等多个特征,构建高维特征向量,从而将检测问题转换为二分类问题.其次,通过仿真含目标回波,解决两类训练样本非均衡的问题.然后,引入GBDT算法,将高维特征向量凝聚为一维概率预测值,并以预测值作为检测统计量,解决二分类器难以控制虚警的问题.最后,采用IPIX实测数据验证,结果表明:本文所提的检测器充分利用了高维特征的全部信息,性能平均提升13%以上.

    Abstract:

    At present,high-dimensional (HD) feature detection is an effective approach to improve the detection performance of sea-surface small targets.The main difficulty lies in the design of classifier in high-dimensional space.Therefore,a feature detection approach based on false-alarm-controllable gradient boosting decision tree (GBDT) is proposed in this paper.First,multiple features are extracted from the 1D long-term observation vector in time,frequency,time-frequency domains to construct an HD feature vector.In this way,the detection problem is converted into a binary classification problem.Second,two types of balanced training samples are solved by simulating returns with target.Third,GBDT algorithm is introduced to condense the HD feature vector into 1D predicted value in probability.The predicted value is used as detection statistics to solve the problem of uncontrollable false alarm rate perplexed the binary classifier.Finally,experimental results are verified by IPIX measured data,which show that the proposed detector can make full use of all the information from the HD characteristics,and the performance is improved by over 13%.

    参考文献
    [1] Zhao W J,Chen Z,Jin M L.Subband maximum eigenvalue detection for radar moving target in sea clutter[J].IEEE Geoscience and Remote Sensing Letters,2021,18(2):281-285
    [2] 邵夫驰,行鸿彦.基于FRFT的多重分形海面小目标检测[J].探测与控制学报,2020,42(1):69-74,80 SHAO Fuchi,XING Hongyan.Small target detection based on multi-fractal characteristics of sea clutter FRFT spectrum[J].Journal of Detection&Control,2020,42(1):69-74,80
    [3] Yan K,Bai Y,Wu H C,et al.Robust target detection within sea clutter based on graphs[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(9):7093-7103
    [4] 谢洪森,邹鲲,周鹏.低掠射角海杂波的统计特性分析[J].雷达科学与技术,2011,9(2):172-179 XIE Hongsen,ZOU Kun,ZHOU Peng.Statistical analysis of sea clutter at low grazing angle[J].Radar Science and Technology,2011,9(2):172-179
    [5] Greco M,Bordoni F,Gini F.X-band sea-clutter nonstationarity:influence of long waves[J].IEEE Journal of Oceanic Engineering,2004,29(2):269-283
    [6] Hu J,Tung W W,Gao J B.Detection of low observable targets within sea clutter by structure function based multifractal analysis[J].IEEE Transactions on Antennas and Propagation,2006,54(1):136-143
    [7] 张林,李秀友,刘宁波,等.基于分形特性改进的EMD目标检测算法[J].电子与信息学报,2016,38(5):1041-1046 ZHANG Lin,LI Xiuyou,LIU Ningbo,et al.Improved EMD target detection method based on mono fractal characteristics[J].Journal of Electronics&Information Technology,2016,38(5):1041-1046
    [8] Shui P L,Li D C,Xu S W.Tri-feature-based detection of floating small targets in sea clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1416-1430
    [9] Shi S N,Shui P L.Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(11):6395-6411
    [10] Gu T C.Detection of small floating targets on the sea surface based on multi-features and principal component analysis[J].IEEE Geoscience and Remote Sensing Letters,2020,17(5):809-813
    [11] Shui P L,Guo Z X,Shi S N.Feature-compression-based detection of sea-surface small targets[J].IEEE Access,2019,8:8371-8385
    [12] 郭子薰,水鹏朗,白晓惠,等.海杂波中基于可控虚警K近邻的海面小目标检测[J].雷达学报,2020,9(4):654-663 GUO Zixun,SHUI Penglang,BAI Xiaohui,et al.Sea-surface small target detection based on K-NN with controlled false alarm rate in sea clutter[J].Journal of Radars,2020,9(4):654-663
    [13] Zhou H K,Jiang T.Decision tree based sea-surface weak target detection with false alarm rate controllable[J].IEEE Signal Processing Letters,2019,26(6):793-797
    [14] Gupta A,Gusain K,Popli B.Verifying the value and veracity of extreme gradient boosted decision trees on a variety of datasets[C]//2016 11th International Conference on Industrial and Information Systems (ICIIS).December 3-4,2016,Roorkee,India.IEEE,2016:457-462
    [15] Friedman J H.Greedy function approximation:a gradient boosting machine[J].The Annals of Statistics,2001,29(5):1189-1232
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘安邦,施赛楠,杨静,曹鼎.基于虚警可控梯度提升树的海面小目标检测[J].南京信息工程大学学报(自然科学版),2022,14(3):341-347
LIU Anbang, SHI Sainan, YANG Jing, CAO Ding. Sea-surface small target detection based on false-alarm- controllable gradient boosting decision tree[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(3):341-347

复制
分享
文章指标
  • 点击次数:361
  • 下载次数: 1467
  • HTML阅读次数: 70
  • 引用次数: 0
历史
  • 收稿日期:2021-07-09
  • 在线发布日期: 2022-06-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司