基于FPGA的人体行为识别系统的设计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP274

基金项目:

国家自然科学基金(61601230)


Design of human activity recognition system based on FPGA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现边缘端人体行为识别需满足低功耗、低延时的目标,本文设计了一种以卷积神经网络(CNN)为基础、基于可穿戴传感器的快速识别系统.首先通过传感器采集数据,制作人体行为识别数据集,在PC端预训练基于CNN的行为识别模型,在测试集达到93.61%的准确率.然后,通过数据定点化、卷积核复用、并行处理数据和流水线等方法实现硬件加速.最后在FPGA上部署识别模型,并将采集到的传感器数据输入到系统中,实现边缘端的人体行为识别.整个系统基于Ultra96-V2进行软硬件联合开发,实验结果表明,输入时钟为200 M的情况下,系统在FPGA上运行准确率达到91.80%的同时,识别速度高于CPU,功耗仅为CPU的1/10,能耗比相对于GPU提升了91%,达到了低功耗、低延时的设计要求.

    Abstract:

    In order to achieve the goal of low power consumption and low latency for edge-end human activity recognition,this paper designs a fast recognition system based on wearable sensors and Convolutional Neural Networks (CNNs).First,the system collects data through sensors to make a human activity recognition dataset,and pre-trains a CNN-based behavior recognition model on the PC side,which achieves an accuracy of 93.61% on the test set.Then,hardware acceleration is realized through methods such as data fixed point,convolution kernel multiplexing,parallel processing of data,and pipeline.Finally,the recognition model is deployed on the FPGA,and the collected sensor data are input into the system to realize the recognition of human activity at the edge.The whole system is developed jointly with hardware and software based on Ultra96-V2.The experimental results show that when the input clock is 200 M,the system runs on FPGA with an accuracy of 91.80%;the proposed system is superior to CPU in recognition speed as well as power consumption,specifically,the power consumption is only one-tenth of CPU consumed,and energy consumption ratio is 91% higher than that of GPU.It can be concluded that the FPGA-based human activity recognition system meets the design requirements of low power consumption and low delay.

    参考文献
    相似文献
    引证文献
引用本文

吴宇航,何军.基于FPGA的人体行为识别系统的设计[J].南京信息工程大学学报(自然科学版),2022,14(3):331-340
WU Yuhang, HE Jun. Design of human activity recognition system based on FPGA[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(3):331-340

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-11
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司