1961—2019年江西省降雨侵蚀力时空变化分析
作者:
作者单位:

1.南京信息工程大学;2.环境保护部南京环境科学研究所

中图分类号:

S157.1 ????????

基金项目:

生态环境部“三定”职责项目“全国生态状况遥感调查与评估”(22110499002)


Spatial-temporal variation of rainfall erosivity in Jiangxi Province from 1961 to 2019
Author:
Affiliation:

1.NUIST;2.Nanjing Institute of environmental science, Ministry of environmental protection

Fund Project:

National Ecological Status Remote Sensing Survey and Assessment project of Ministry of Ecology and Environment, No.22110499002

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    降雨侵蚀力(R)与降雨量、降雨历时、降雨强度、降雨动能有关,反映了降雨特性对土壤侵蚀的影响,是影响土壤侵蚀重要的因素之一。本文利用1961—2019年江西省25个气象站点的逐日降雨量数据,基于降雨侵蚀力模型,通过Mann-Kendall相关检验、小波分析和Kriging空间插值方法,分析江西省降雨侵蚀力空间分布及变化趋势。结果表明:江西省年均降雨量和降雨侵蚀力从赣南到赣北逐渐增加,同时降雨空间分布和降雨侵蚀力空间分布具有相似性;春季和夏季降雨侵蚀力在3000~6000 MJ·mm·hm-2·h-1·a-1,且春季降雨侵蚀力最大值高于夏季,而秋冬季降雨侵蚀力明显小于春夏季;江西省年降雨侵蚀力平均分布,平均最大值分布在赣北区域,其次赣中,赣南最小,侵蚀力由北向南逐渐递减。研究表明江西省因降雨产生侵蚀力不断增加,尤其以春夏季更为剧烈,其空间分布存在明显差异。

    Abstract:

    Rainfall erosivity (R) is related to rainfall amount, rainfall duration, rainfall intensity, and rainfall kinetic energy. It reflects the influence of rainfall characteristics on soil erosion and is one of the important factors affecting soil erosion. Using the daily rainfall data of 25 meteorological stations in Jiangxi Province from 1961 to 2019, based on the rainfall erosivity model, through Mann-Kendall correlation test, wavelet analysis and Kriging spatial interpolation method, the spatial distribution and variation trend of rainfall erosivity in Jiangxi Province were analyzed. The results show that the annual average rainfall and rainfall erosivity in Jiangxi Province gradually increased from southern Jiangxi to northern Jiangxi, and the spatial distribution of rainfall and rainfall erosivity were similar; the rainfall erosivity in spring and summer ranged from 3000 to 6000 MJ·mm· hm-2·h-1·a-1, and the maximum rainfall erosivity in spring is higher than that in summer, while the rainfall erosivity in autumn and winter is significantly smaller than that in spring and summer; the annual rainfall erosivity in Jiangxi Province is evenly distributed, and the average maximum value is distributed in northern Jiangxi area, followed by central Jiangxi and southern Jiangxi, and the erosive force gradually decreased from north to south. The research shows that the erosion factors caused by rainfall are increasing in Jiangxi Province, especially in spring and summer, and there are obvious differences in their spatial distribution.

    参考文献
    [1] 何绍浪, 何小武, 李凤英, 等. 近60年来江西省各等级侵蚀性降雨与降雨侵蚀力的关系[J]. 水土保持研究, 2018,25(02):8-14.
    [2] Lee J, Heo J. Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea[J]. Journal of Hydrology, 2011,409(1-2):30-48.
    [3] Long H L, Heilig G K, Wang J, et al. Land use and soil erosion in the upper reaches of the Yangtze River: some socio‐economic considerations on China''s Grain‐for‐Green Programme[J]. Land Degradation Development, 2006,17(6):589-603.
    [4] Stocker T. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge university press, 2014.
    [5] 朱大运, 杨倩, 陈海, 等. 1960-2017年贵州省不同水系降雨侵蚀力时空变异特征[J]. 水土保持通报, 2021,41(01):6-14.
    [6] 欧阳千林, 占承德. 近30年江西省洪灾损失等级评估及对降雨响应研究[J]. 江西水利科技, 2020,46(05):325-331.
    [7] 马良, 姜广辉, 左长清, 等. 江西省50余年来降雨侵蚀力变化的时空分布特征[J]. 农业工程学报, 2009,25(10):61-68.
    [8] 温天福, 张范平, 胡建民, 等. 1958-2014年赣江流域降雨侵蚀力时空变化特征[J]. 水土保持研究, 2020,27(01):7-14.
    [9] 周琳, 许武成, 尹义星. 近61年四川省降雨侵蚀力的时空变化趋势[J]. 水土保持研究, 2018,25(04):8-14.
    [10] 索笑颖, 刘玉春, 赵光耀, 等. 河北省山区降雨侵蚀力的时空变化特征[J]. 水土保持通报, 2020,40(06):259-265.
    [11] 曾瑜, 厉莎, 胡煜彬. 1961—2014年鄱阳湖流域降雨侵蚀力时空变化特征[J]. 生态与农村环境学报, 2019,35(01):106-114.
    [12] Lima C H R, Kwon H, Kim Y. A Bernoulli-Gamma hierarchical Bayesian model for daily rainfall forecasts[J]. Journal of Hydrology, 2021,599:126317.
    [13] Kirono D G C, Hennessy K J, Grose M R. Increasing risk of months with low rainfall and high temperature in southeast Australia for the past 150years[J]. Climate Risk Management, 2017,16:10-21.
    [14] Berhane T, Shibabaw N, Awgichew G, et al. Option pricing of weather derivatives based on a stochastic daily rainfall model with Analogue Year component[J]. Heliyon, 2020,6(1):e3212.
    [15] 张燕明, 文俊, 王新华, 等. 基于Mann-Kendall分析的昆明降雨与气温变化趋势研究[J]. 安徽农业科学, 2011,39(25):15755-15757.
    [16] 郭铭. 基于小波分析的朝阳市降水周期特征研究[J]. 水土保持应用技术, 2017(04):41-43.
    [17] 阳宽达, 谢红霞, 隋兵, 等. 基于GIS的降雨空间插值研究——以湖南省为例[J]. 水土保持研究, 2020,27(03):134-138.
    [18] 汪邦稳, 方少文, 宋月君, 等. 赣北第四纪红壤区侵蚀性降雨强度与雨量标准的确定[J]. 农业工程学报, 2013,29(11):100-106.
    [19] 马轩龙, 李春娥, 陈全功. 基于GIS的气象要素空间插值方法研究[J]. 草业科学, 2008(11):13-19.
    [20] 于延胜, 陈兴伟. 基于Mann-Kendall法的水文序列趋势成分比重研究[J]. 自然资源学报, 2011(9).
    [21] Gü?lü Y S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA[J]. Journal of Hydrology, 2020,584:124674.
    [22] 陈晓瑜, 孙晓航, 黄奇晓, 等. 1970—2017年福建省降雨侵蚀力的时空变化特征[J]. 福建农林大学学报(自然科学版), 2021,50(01):125-133.
    [23] 韩知明, 贾克力, 杨芳, 等. 基于Morlet小波的呼伦湖流域降水多时间尺度分析[J]. 水土保持研究, 2018,25(01):160-166.
    [24] 纪小敏, 刘炜伟, 聂青, 等. 基于Morlet小波分析的长江大通站径流年际变化周期研究[J]. 江苏水利, 2016(06):26-29.
    [25] 蒋育昊, 刘鹏举, 夏智武, 等. PRISM模型在复杂地形月降雨空间插值中的可行性研究[J]. 水土保持研究, 2018,25(01):57-61.
    [26] 何绍浪, 何小武, 李凤英, 等. 近60年来江西省各等级侵蚀性降雨与降雨侵蚀力的关系[J]. 水土保持研究, 2018,25(02):8-14.
    [27] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological society, 1998,79(1):61-78.[在此处键入]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑潇,白淑英,高吉喜.1961—2019年江西省降雨侵蚀力时空变化分析[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:175
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-09
  • 最后修改日期:2022-09-10
  • 录用日期:2022-09-21

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司