基于注意力残差网络的Wi-Fi设备的射频指纹识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN918

基金项目:

国家自然科学基金(61673067)


Radio frequency fingerprint identification of Wi-Fi device based on attention residual network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于无线介质的开放性,传统的基于安全协议的无线网络安全存在隐患,基于物理层的射频指纹(RFF)识别,具有特征难以伪造的优点,能有效提高无线网络的安全性.针对多场景、多设备识别任务,构建了基于注意力残差卷积神经网络的射频指纹识别方法.实验采集构建了完备的数据集,数据集包含32个Wi-Fi模块,覆盖802.11b标准的2.4 GHz模块.对比结果表明:该方法在32个Wi-Fi模块的识别中达到90%的识别精度,高于传统算法86%的识别率和卷积神经网络方法的89%的识别率;不同采样率的数据集在2 dB时均可以达到90%以上的识别精度,最终在信噪比(SNR)大于20 dB时,识别精度可以达到96%.

    Abstract:

    The openness of wireless media has been a security threat for traditional wireless network based on security protocol.While the Radio Frequency Fingerprint (RFF) identification is based on physical layer security,and considering the RFF is impossible to forge,the RFF identification can effectively improve the security of wireless network.Aiming at the multi-scene and multi-device identification,an RFF identification approach is constructed based on attention residual convolution neural network.The dataset contains 32 Wi-Fi modules,covering the 2.4 GHz module of 802.11b standard.The comparison results show that the recognition accuracy of the proposed approach is 90% for the 32 Wi-Fi modules,higher than that of traditional algorithm (86%) and convolutional neural network approach (89%);the recognition accuracy can be higher than 90% on the dataset with different sampling rates when the SNR is greater than 2 dB,which can reach as high as 96% when the SNR is greater than 20 dB.

    参考文献
    相似文献
    引证文献
引用本文

张凯,郭剑黎,胡军星,任俊霞,谭磊.基于注意力残差网络的Wi-Fi设备的射频指纹识别[J].南京信息工程大学学报(自然科学版),2022,14(3):324-330
ZHANG Kai, GUO Jianli, HU Junxing, REN Junxia, TAN Lei. Radio frequency fingerprint identification of Wi-Fi device based on attention residual network[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(3):324-330

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-11
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司