基于混合密码体制的大数据隐匿性特征安全提取技术
作者单位:

1.中国科协信息中心;2.山东科技大学

中图分类号:

TP393???? ??????????

基金项目:

山东省重点研发计划重大科技创新工程《面向石油行业的安全可信云与动态态势感知系统建设及应用示范》(编号:2020SO10103-00517)


Security extraction technology of big data hiding features based on hybrid cryptosystem
Author:
Affiliation:

1.Information Center of China Association for Science and Technology;2.Shandong University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统大数据隐匿性特征安全提取技术忽略了大数据密文的公钥及密钥封装,且大数据隐匿性特征类别混乱,导致该技术的提取精度偏低,冗余度较高。为此,提出基于混合密码体制的大数据隐匿性特征安全提取方法。通过混合密码体制中的公钥封装以及密钥封装机制生成大数据密文。根据密文内容设计对称加密方法和非对称加密方法,基于此分类隐匿性特征。利用不同类的隐匿性特征构建大数据隐秘性特征相空间,计算大数据间的关联维值,实现大数据隐匿特征的安全提取。实验结果表明,与传统方法相比,所提出的大数据隐匿特征提取方法冗余度低,大数据隐匿特征平均正确分类率高达95%,且特征安全提取误差低,验证了所提方法具有更好的应用性能。

    Abstract:

    The traditional security extraction technology of big data concealment features ignores the public key and key encapsulation of big data ciphertext, and the category of big data concealment features is chaotic, leading to the low extraction accuracy and high redundancy of this technology. Therefore, this paper proposes a security extraction method of big data concealment features based on mixed cipher system. Big data ciphertext is generated by public key encapsulation and key encapsulation mechanism in mixed cryptography. Symmetric encryption method and asymmetric encryption method are designed according to the ciphertext content, based on the hidden characteristics of the classification. The hidden feature phase space of big data is constructed by using the hidden features of different classes, and the correlation dimension value among big data is calculated to realize the safe extraction of the hidden features of big data. The experimental results show that, compared with the traditional methods, the proposed big data hidden feature extraction method has low redundancy, the average correct classification rate of big data hidden features is up to 95%, and the error of feature safe extraction is low, which verifies that the proposed method has better application performance.

    参考文献
    [1] 杨国强,丁杭超,邹静,等.基于高性能密码实现的大数据安全方案[J].计算机研究与发展,2019,56(10):2207-2215.
    [2] 徐超, 陈勇, 葛红美,等. 基于大数据的审计技术研究[J]. 电子学报, 2020, 48(5):1003-1017.
    [3] 王永坤, 罗萱, 金耀辉. 基于私有云和物理机的混合型大数据平台设计及实现[J]. 计算机工程与科学, 2018, 40(2):191-199.
    [4] 杨丽丽.船用物联网大数据加密的混合密码体制[J].舰船科学技术,2020,42(4):196-198.
    [5] Wang A Q , Literature S O , University W . Network User Agreement Language under Big Data Strategy:Problems and Suggestions[J]. Journal of Eastern Liaoning University(Social Sciences), 2019.
    [6] 蔡柳萍, 解辉, 张福泉,等. 基于稀疏表示和特征加权的大数据挖掘方法的研究[J]. 计算机科学, 2018, 45(11):263-267.
    [7] 陈贵平, 王子牛. 基于大数据分析的用户信息多重加密存储技术[J]. 计算机科学, 2018, 45(7):150-153.
    [8] 张启星,付敬奇.基于信道特征提取的物理层安全密钥生成方法[J].电子测量与仪器学报,2019,33(1):16-22.
    [9] 王妍,李俊,曾辉,等.一种基于互信息的实时特征提取算法[J].小型微型计算机系统,2019,40(6):1242-1247.
    [10] 段大高, 赵振东, 梁少虎,等. 基于条件变分自编码的密码攻击算法[J]. 计算机应用研究, 2020, 37(3):821-837.
    [11] 吴颖, 李晓玲, 唐晶磊. Hadoop平台下粒子滤波结合改进ABC算法的IoT大数据特征选择方法[J]. 计算机应用研究, 2019, 36(11):3297-3301.
    [12] 雷璟. 用户行为特征提取及安全预警建模技术[J]. 中国电子科学研究院学报, 2019, 14(4):368-372.
    [13] 刘波涛,彭长根,吴睿雪,等.基于MILP方法的LED密码安全性分析[J].计算机应用研究,2020,37(2):505-517.
    [14] 李玉娇, 黄青平, 刘松,等. 基于聚类融合技术的电力用户负荷模式提取方法[J]. 电测与仪表, 2018, 55(16):143-158.
    [15] 颜毅, 吴章勇. 基于犹豫模糊集的桥梁最佳监测数据提取研究[J]. 公路工程, 2019, 44(6):9-76.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘小都,赵慧奇.基于混合密码体制的大数据隐匿性特征安全提取技术[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:134
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-03
  • 最后修改日期:2022-04-26
  • 录用日期:2022-06-08

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司