基于频域相对样本熵的海面小目标特征检测
作者:
作者单位:

1.南京信息工程大学 2.南京信大安全应急管理研究院;2.南京信息工程大学;3.南京船舶雷达研究所

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Feature Detection of Sea-surface Small Targets via Relative Sample Entropy in Frequency Domain
Author:
Affiliation:

1.Nanjing University of Information Science and Technology 2.Nanjing Xinda Institute of Safety and Emergency Management;2.Nanjing University of Information Science and Technology;3.Nanjing marine radar institute

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    海面小目标一直是海洋雷达探测的重难点对象。针对传统检测器检测概率低的问题,本文提出了一种基于相对样本熵的特征检测器(Feature Detector via Relative Sample Entropy, FD-RSE)。首先,定义了白化频谱,实现对主杂波带的抑制,从而增大了海杂波序列的不规则性。其次,通过引入样本熵描述序列的复杂度,提取了白化频谱的相对样本熵,并将之作为特征。在检测时,该特征能够充分利用海杂波和含目标回波在频谱上的几何差异性。最后,IPIX实测数据验证表明:与传统检测器相比,FD-RSE检测器能有效改善检测性能。

    Abstract:

    It has always been a difficult subject for marine radar to detect small targets on sea surface. To overcome the low detection probability of traditional detectors, a feature detector based on relative sample entropy (denoted as FD-RSE) is proposed in this paper. Firstly, the whitened spectrum is defined to suppress the main clutter region, thus enlarging the irregularity of the sea clutter sequence. Then, by introducing sample entropy describe the complexity of sea clutter sequence, relative sample entropy is extracted from whitened spectrum to serve as feature. Therefore, the difference between the geometric characteristic of sea clutter and that of target echo can be thoroughly exploited in the Doppler spectrum. Finally, the superiority of the proposed FD-RSE detector over traditional detectors in improving detection performance can be verified by the IPIX measured dataset.

    参考文献
    [1] 许述文, 白小惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684-714.
    [2] SHI Sainan, LIANG Xiang, SHUI Penglang, et al. Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8937-8953.
    [3] 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516.
    [4] UNSWORTH C P, COWPER M R, MCLAUGHLIN S, et al. Re-examining the nature of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3): 105-114.
    [5] 牟效乾, 陈小龙, 关键, 等. 基于INet的雷达图像杂波抑制和目标检测方法[J]. 雷达学报, 2020, 9(4): 640-653.
    [6] HU Jing, TUNG Wenwen, GAO Jianbo. Detection of low observable targets within sea clutter by structure function based multi-fractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136-143.
    [7] CHEN Xiaolong, GUAN Jian, HE You, et al. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain[J]. IET Radar Sonar & Navigation, 2013, 7(6): 635-651.
    [8] 邵夫驰, 行鸿彦. 基于FRFT的多重分形海面小目标检测[J]. 探测与控制学报, 2020, 42 (1): 69-74, 80.
    [9] XU Shuwen , ZHENG Jibin , PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505-1509.
    [10] SHI Yanling, XIE Xiaoyan, LI Dongchen. Range distributed floating target detection in sea clutter via feature-based detector[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1847-1850.
    [11] SHUI Penglang, LI Dongchen, XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416-1430.
    [12] LI Yuzhou, XIE Pengcheng, TANG Zeshen, et al. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1225-1229.
    [13] PINCUS S M. Approximate entropy as a complexity measure[J]. Chaos,1995,5(1): 110-117.
    [14] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6): 2039-2049.
    [15] CHEN Weiting, ZHANG Zhizhong, XIE Hongbo, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272.
    [16] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 1685-1687.
    [17] COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series [J]. Physical Review Letters, 2002, 89(6): 1-18.
    [18] McMaster IPIX radar sea clutter database[OL]: http://soma.ece.mcmaster.ca/ipix/
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施赛楠,姜丽,曹鼎,王金虎.基于频域相对样本熵的海面小目标特征检测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:290
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-02
  • 最后修改日期:2022-09-30
  • 录用日期:2022-10-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司