基于异构模式的高光谱数据加速处理方法研究
作者:
中图分类号:

TP751.1

基金项目:

国家重点研发计划(2016YFB0500601)


GPU-based accelerated processing of atmospheric hyperspectral remote sensing data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    随着遥感卫星更高时空分辨率的大气探测需求,大气遥感高光谱数据量骤增,传统高光谱数据的处理效率较低,无法满足高性能处理高光谱数据的需求.首先介绍了国内外研究者利用图形处理器(GPU)加速处理遥感高光谱数据的应用实例,然后对基于CPU-GPU异构模式的大气遥感高光谱数据傅里叶分析的并行化计算进行了研究,并进行算法实现,最后同传统基于CPU计算做了实验比较.实验结果表明,使用基于CPU-GPU异构模式的方法处理高光谱数据时,在保证数据准确性的同时速度提升80多倍,验证了将GPU加速用于处理大气遥感高光谱数据的有效性,可以更好地满足气象卫星更高时空分辨率的大气探测需求.

    Abstract:

    The demand for higher temporal and spatial resolution of atmospheric detection has brought about rapid increase of atmospheric hyperspectral remote sensing data;however,traditional methods have low efficiency for hyperspectral data processing.Here,we summarize the application examples of using GPU to accelerate the processing of hyperspectral remote sensing data,among which we focus on the parallel computing of the Fourier analysis of hyperspectral data based on the CPU-GPU heterogeneous mode.Then the CPU-GPU heterogeneous mode based parallel computing is implemented and then compared with traditional CPU-based computing.The results show that the data processing speed is increased by about 90 times while ensuring the data accuracy as well,thus verify the effectiveness of GPU to accelerate the processing of atmospheric remote sensing hyperspectral data.

    参考文献
    [1] 华建文,毛建华."风云四号"气象卫星大气垂直探测仪[J].科学,2018,70(1):24-29 HUA Jianwen,MAO Jianhua.Geostationary interferometric-type infrared sounder (GIRS) on Fengyun No.4 meteorological satellite[J].Science,2018,70(1):24-29
    [2] 金媛.面向CPU、GPU及其异构形式的混合模拟算法的高性能并行优化[D].南昌:南昌大学,2020 JIN Yuan.High performance parallel optimization of hybrid simulation algorithms for CPU,GPU and its heterogeneous forms[D].Nanchang:Nanchang University,2020
    [3] 王茂芝,郭科,徐文皙.基于集群和GPU的高光谱遥感影像并行处理[J].红外与激光工程,2013,42(11):3070-3075 WANG Maozhi,GUO Ke,XU Wenxi.Parallel processing of hyperspectral remote sensing images based on cluster and GPU[J].Infrared and Laser Engineering,2013,42(11):3070-3075
    [4] 汤媛媛,周海芳,方民权,等.基于CPU/GPU异构模式的高光谱遥感影像数据处理研究与实现[J].计算机科学,2016,43(02):47-50,77 TANG Yuanyuan,ZHOU Haifang,FANG Minquan,et al.Research and implementation of hyperspectral remote sensing image data processing based on CPU/GPU heterogeneous model[J].Computer Science,2016,43(2):47-50,77
    [5] Paz A,Plaza A.Cluster versus GPU implementation of an orthogonal target detection algorithm for remotely sensed hyperspectral images[C]//2010 IEEE International Conference on Cluster Computing,2010:227-234
    [6] 刘灿.遥感图像几何校正GPU阵列并行算法研究[D].成都:电子科技大学,2019 LIU Can.Research on GPU array parallel algorithm for geometric correction of remote sensing images[D].Chengdu:University of Electronic Science and Technology of China,2019
    [7] 党源源,王昕.CPU-GPU异构系统在光学遥感影像处理中的应用[J].红外与激光工程,2020,49(增刊1):177-185 DANG Yuanyuan,WANG Xin.Application of CPU-GPU heterogeneous system in optical remote sensing image processing[J].Infrared and Laser Engineering,2020,49(sup1):177-185
    [8] 张明华,邹亚晴,宋巍,等.GGCN:基于GPU的高光谱图像分类算法[J].激光与光电子学进展,2020,57(20):231-237 ZHANG Minghua,ZOU Yaqing,SONG Wei,et al.GGCN:GPU-based hyperspectral image classification algorithm[J].Laser&Optoelectronics Progress,2020,57(20):231-237
    [9] 龚彤艳,张广婷,贾海鹏,等.一种偶数基Cooley-Tukey FFT高性能实现方法[J].计算机科学,2020,47(1):31-39 GONG Tongyan,ZHANG Guangting,JIA Haipeng,et al.A high performance implementation method of Cooley-Tukey FFT with even base[J].Computer Science,2020,47(1):31-39.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张远,张大伟,陈仁,华建文.基于异构模式的高光谱数据加速处理方法研究[J].南京信息工程大学学报(自然科学版),2022,14(2):247-252
ZHANG Yuan, ZHANG Dawei, CHEN Ren, HUA Jianwen. GPU-based accelerated processing of atmospheric hyperspectral remote sensing data[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(2):247-252

复制
分享
文章指标
  • 点击次数:631
  • 下载次数: 1415
  • HTML阅读次数: 138
  • 引用次数: 0
历史
  • 收稿日期:2021-05-22
  • 在线发布日期: 2022-04-27

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司