不同类型稻田亚硝酸型CH4厌氧氧化潜力的比较研究
作者:
中图分类号:

S154.1;S511.061

基金项目:

国家自然科学基金(42175138,4167 1247)


Comparative study on nitrite-dependent anaerobic methane oxidation in different types of paddy field
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    甲烷(CH4)厌氧氧化是稻田土壤中消减温室气体排放的重要过程.本试验选择内陆性南京稻田和滨海性上海崇明岛围垦稻田,比较研究稻田耕层(0~10 cm)和深层(50~60 cm)土壤中亚硝酸盐型CH4厌氧氧化(n-DAMO)潜力的差异及其微生物驱动机制.结果表明,南京稻田耕层土壤的n-DAMO速率为3.51 nmol·g-1·d-1(以13CO2计),显著高于围垦稻田耕层土壤(1.43 nmol·g-1·d-1).两种类型稻田耕层土壤的n-DAMO速率均显著高于深层土壤.南京稻田和围垦稻田M.oxyfera-like细菌的16S rRNA基因拷贝数分别为(2.31~4.82)×107和(0.89~2.12)×107 copies·g-1,与亚硝酸盐型CH4厌氧氧化速率显著正相关.相关性分析发现,土壤有机碳、总氮、无机态氮是稻田n-DAMO速率分异的重要原因.综上所述,内陆性稻田土壤n-DAMO氧化潜力较高,其主要由较高的土壤本底碳、氮水平和功能微生物丰度所致.

    Abstract:

    Anaerobic methane (CH4) oxidation is an important process to reduce greenhouse gas emissions in paddy soil.The nitrite-dependent Denitrifying Anaerobic Methane Oxidation (n-DAMO) potential and its microbial mechanism in cultivated layer (0-10 cm) and deep layer (50-60 cm) of inland (Nanjing) and coastal (reclaimed Shanghai Chongming Island) paddy fields were studied.The results showed that n-DAMO rate of topsoil in Nanjing paddy field was 3.51 nmol 13CO2·g-1·d-1,which was significantly higher than that of topsoil in reclaimed paddy field (1.43 nmol 13CO2·g-1·d-1).The n-DAMO rates in the cultivated layer soil were significantly higher than those in the deep layer soil in the two types of paddy field.The copy numbers of 16S rRNA gene of functional microorganism M.oxyfera-like bacteria in Nanjing paddy field and reclaimed paddy field were 2.31×107-4.82×107 copies·g-1 and 0.89×107-2.12×107 copies·g-1,respectively,which was significantly positively correlated with nitrite-dependent anaerobic CH4 oxidation rate.Regression analysis showed that soil organic carbon,total nitrogen and inorganic nitrogen were important factors for n-DAMO rate differentiation in paddy fields.In conclusion,the n-DAMO potential of inland paddy soil is higher than that in reclaimed paddy field,which is mainly caused by the different levels of soil background carbon and nitrogen and the abundance of functional microorganisms.

    参考文献
    [1] Dean J F,Middelburg J J,Röckmann T,et al.Methane feedbacks to the global climate system in a warmer world[J].Reviews of Geophysics,2018,56(1):207-250
    [2] Cai Y F,Zheng Y,Bodelier P L E,et al.Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J].Nature Communications,2016,7:11728
    [3] Bridgham S D,Cadillo-Quiroz H,Keller J K,et al.Methane emissions from wetlands:biogeochemical,microbial,and modeling perspectives from local to global scales[J].Global Change Biology,2013,19(5):1325-1346
    [4] Conrad R,Klose M,Noll M.Functional and structural response of the methanogenic microbial community in rice field soil to temperature change[J].Environmental Microbiology,2009,11(7):1844-1853
    [5] Bodelier P L E.Toward understanding,managing,and protecting microbial ecosystems[J].Frontiers in Microbiology,2011,2:1-8
    [6] Ding J,Fu L,Ding Z W,et al.Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field[J].Applied Microbiology and Biotechnology,2016,100:439-446
    [7] Hu B L,Shen L D,Lian X,et al.Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(12):4495-4500
    [8] Deutzmann J S,Schink B.Anaerobic oxidation of methane in sediments of Lake Constance,an oligotrophic freshwater lake[J].Applied and Environmental Microbiology,2011,77(13):4429-4436
    [9] He Z F,Geng S,Cai C Y,et al.Anaerobic oxidation of methane coupled to nitrite reduction by halophilic marine NC10 bacteria[J].Applied and Environmental Microbiology,2014,81(16):5538-5545
    [10] Wang J Q,Cai C Y,Li Y F,et al.Denitrifying anaerobic methane oxidation:a previously overlooked methane sink in intertidal zone[J].Environmental Science&Technology,2019,53(1):203-212
    [11] Zhou L L,Wang Y,Long X E,et al.High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile[J].FEMS Microbiology Letters,2014,360(1):33-41
    [12] Wang Y,Zhu G B,Harhangi H R,et al.Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil[J].FEMS Microbiology Letters,2012,336(2):79-88
    [13] Li X F,Gao D Z,Liu M.Composition,diversity and abundance of Candidatus M.oxyfera-like bacteria in response to the estuary salinity[J].Biogeochemistry,2019,143:1-14
    [14] Shen L D,Hu B L,Liu S,et al.Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J].Applied Microbiological Biotechnology,2016,100:7171-7180
    [15] 张洁,宋怡轩,张鑫磊,等.不同类型稻田中全程氨氧化微生物的分异特征[J].江苏农业学报,2020,36(3):584-590 ZHANG Jie,SONG Yixuan,ZHANG Xinlei,et al.Differentiation characteristics of complete ammonia-oxidizing microorganisms in different types of paddy soils[J].Jiangsu Journal of Agriculture Science,2020,36(3):584-590
    [16] 林黎,崔军,陈学萍,等.滩涂围垦和土地利用对土壤微生物群落的影响[J].生态学报,2014,34(4):899-906 LIN Li,CUI Jun,CHEN Xueping,et al.Effects of reclamation on tidal flat and land use on soil microbial community[J].Acta Ecologica Sinica,2014,34(4):899-906
    [17] Zhao W,Wang Y Y,Liu S H,et al.Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J].Chemical Engineering Journal,2013,215/216:252-260
    [18] Zhang Y H,Zhang X L,Wang F Y,et al.Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of methane in estuarine coastal sediments[J].Ecological Engineering,2020,158:106021
    [19] Ettwig K F,Butler M K,Le Paslier D,et al.Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J].Nature,2010,464(7288):543-548
    [20] 夏超,祝贵兵,邹雨璇,等.厌氧氨氧化细菌和反硝化厌氧甲烷氧化细菌在岸边带土壤中的分布规律[J].环境科学学报,2015,35(12):3965-3975 XIA Chao,ZHU Guibing,ZOU Yuxuan,et al.Distribution of anaerobic ammonia oxidizing bacteria and nitrite-dependent anaerobic methane oxidizing bacteria in soil profile in the riparian zone[J].Acta Scientiae Circumstantiae,2015,35(12):3965-3975
    [21] 张鑫磊,宋怡轩,张洁,等.围垦植稻对崇明东滩湿地产甲烷微生物的影响[J].农业环境科学学报,2020,39(2):411-417 ZHANG Xinlei,SONG Yixuan,ZHANG Jie,et al.Effects of reclamation and cultivating rice on CH4-producing microorganisms in Chongming Dongtan wetland,China[J].Journal of Agro-Environment Science,2020,39(2):411-417
    [22] Ettwig K F,van Alen T,van de Pas-Schoonen K T,et al.Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J].Applied and Environmental Microbiology,2009,75(11):3656-3662
    [23] He Z F,Geng S,Shen L D,et al.The short-and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction[J].Water Research,2015,68:554-562
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛梦琪,周聪,饶旭东,谢晴,张耀鸿.不同类型稻田亚硝酸型CH4厌氧氧化潜力的比较研究[J].南京信息工程大学学报(自然科学版),2022,14(1):120-126
XUE Mengqi, ZHOU Cong, RAO Xudong, XIE Qing, ZHANG Yaohong. Comparative study on nitrite-dependent anaerobic methane oxidation in different types of paddy field[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(1):120-126

复制
分享
文章指标
  • 点击次数:415
  • 下载次数: 1395
  • HTML阅读次数: 109
  • 引用次数: 0
历史
  • 收稿日期:2021-11-22
  • 在线发布日期: 2022-04-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司