增温和互花米草入侵对崇明东滩湿地土壤碳循环功能基因的影响
作者:
中图分类号:

X171.1

基金项目:

中央高校基本科研业务费专项资金(2017-2021年);国家自然科学基金青年项目(41807449);国家自然科学基金面上项目(42077083)


Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    湿地生态系统碳循环过程对全球气候变化具有重要影响.本文以崇明东滩湿地土壤为研究对象,采用GeoChip技术检测土壤碳循环关键功能基因,研究增温及互花米草入侵对湿地土壤碳循环的影响及其与环境因子之间的关系.结果表明:湿地土壤中碳循环功能基因数量及丰度均高于其他各类别的基因;在相同温度处理下,种植互花米草土壤的微生物群落碳循环功能基因信号强度均高于种植芦苇土壤;增温显著降低了大多数土壤碳循环功能基因信号强度,包括碳降解、碳固定和甲烷代谢等基本过程,但互花米草入侵及其与增温的交互作用无显著影响(P>0.05);与对照相比,增温显著降低了种植芦苇土壤的微生物群落碳循环功能基因丰度,主要包括碳降解过程中的cda、exopolygalacturonase_fungi、rgh、xyla、xylanase、cellobiase和endoglucanase基因,以及碳固定过程中与卡尔文循环相关的rubisco基因(P<0.01),但对互花米草土壤的微生物群落以及互花米草与芦苇混种处理的影响不显著(P>0.05);土壤微生物碳循环功能基因与土壤活性氮气体排放及土壤pH显著负相关(P<0.05).总之,增温显著地改变了土壤碳循环功能基因丰度,研究结果将为定量全球变暖对湿地碳循环和温室气体排放的影响、实现碳中和等提供数据支撑,也为湿地生态系统的保护和管理提供科学依据.

    Abstract:

    The carbon cycling process in wetland ecosystems has an important impact on global climate change.In this study,we used the GeoChip technology to detect the key functional genes of soil carbon cycle in the wetland soil of Chongming Dongtan,China.We also studied the effects of experimental warming and Spartina alterniflora invasion on carbon cycle of wetland soil and their relationships with environmental factors.The results showed that:1) the number and abundance of functional genes in soil carbon cycle were higher than those in other categories;2) the signal intensity of functional soil carbon cycle genes was higher in S.alterniflora community than in Phragmites australis community with the same temperature treatment;3) warming significantly reduced the signal intensity of most functional genes in soil carbon cycle,including the basic processes of carbon degradation,carbon fixation,and methane metabolism,but the influence was not significant for the S.alterniflora invasion and its interaction with warming (P>0.05);4) compared with the control,warming significantly reduced the abundance of functional genes of carbon cycle in the P.australis community,mainly including cda,exopolygalacturonase_fungi,rgh,xyla,xylanase,cellobiase and endoglucanase genes in the carbon degradation process and rubisco genes related to Calvin cycle during carbon fixation (P<0.01),but the changes were not significant in the S.alterniflora community and their mixed community (P>0.05);5) soil microbial carbon cycle functional genes were significantly and negatively correlated with soil reactive nitrogen gas emission and soil pH (P<0.05).In conclusion,warming significantly changes the functional gene abundances of soil carbon cycle.The research results provide data support for quantifying the impact of global warming on wetland carbon cycle and greenhouse gas emissions,and realizing carbon neutralization,and also provide scientific basis for the protection and management of wetland ecosystem.

    参考文献
    [1] Davidson E A,Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature,2006,440(7081):165-173
    [2] 王法明,唐剑武,叶思源,等.中国滨海湿地的蓝色碳汇功能及碳中和对策[J].中国科学院院刊,2021,36(3):241-251 WANG Faming,TANG Jianwu,YE Siyuan,et al.Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J].Bulletin of Chinese Academy of Sciences,2021,36(3):241-251
    [3] Martínez-Espinosa C,Sauvage S,Al Bitar A,et al.Denitrification in wetlands:a review towards a quantification at global scale[J].Science of the Total Environment,2021,754:142398
    [4] McLeod E,Chmura G L,Bouillon S,et al.A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J].Frontiers in Ecology and the Environment,2011,9(10):552-560
    [5] Bonan G B.Forests and climate change:forcings,feedbacks,and the climate benefits of forests[J].Science,2008,320(5882):1444-1449
    [6] 刘亚男,郗敏,张希丽,等.中国湿地碳储量分布特征及其影响因素[J].应用生态学报,2019,30(7):2481-2489 LIU Yanan,XI Min,ZHANG Xili,et al.Carbon storage distribution characteristics of wetlands in China and its influencing factors[J].Chinese Journal of Applied Ecology,2019,30(7):2481-2489
    [7] Davis J L,Currin C A,O'Brien C,et al.Living shorelines:coastal resilience with a blue carbon benefit[J].PLoS One,2015,10(11):e0142595
    [8] Grandy A S,Neff J C.Molecular C dynamics downstream:the biochemical decomposition sequence and its impact on soil organic matter structure and function[J].Science of the Total Environment,2008,404(2/3):297-307
    [9] Webb E L,Friess D A,Krauss K W,et al.A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise[J].Nature Climate Change,2013,3(5):458-465
    [10] 解雪峰,项琦,吴涛,等.滨海湿地生态系统土壤微生物及其影响因素研究综述[J].生态学报,2021,41(1):1-12 XIE Xuefeng,XIANG Qi,WU Tao,et al.Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem[J].Acta Ecologica Sinica,2021,41(1):1-12
    [11] Mao D H,Liu M Y,Wang Z M,et al.Rapid invasion of Spartina alterniflora in the coastal zone of mainland China:spatiotemporal patterns and human prevention[J].Sensors,2019,19(10):2308
    [12] Liao C Z,Luo Y Q,Jiang L F,et al.Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary,China[J].Ecosystems,2007,10(8):1351-1361
    [13] Sheng Q,Zhao B,Huang M Y,et al.Greenhouse gas emissions following an invasive plant eradication program[J].Ecological Engineering,2014,73:229-237
    [14] 范成新,刘敏,王圣瑞,等.近20年来我国沉积物环境与污染控制研究进展与展望[J].地球科学进展,2021,36(4):346-374 FAN Chengxin,LIU Min,WANG Shengrui,et al.Research progress and prospect of sediment environment and pollution control in China in recent 20 years[J].Advances in Earth Science,2021,36(4):346-374
    [15] 解雪峰,孙晓敏,吴涛,等.互花米草入侵对滨海湿地生态系统的影响研究进展[J].应用生态学报,2020,31(6):2119-2128 XIE Xuefeng,SUN Xiaomin,WU Tao,et al.Impacts of Spartina alterniflora invasion on coastal wetland ecosystem:advances and prospects[J].Chinese Journal of Applied Ecology,2020,31(6):2119-2128
    [16] Fierer N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590
    [17] Huber J A,Welch D B M,Morrison H G,et al.Microbial population structures in the deep marine biosphere[J].Science,2007,318(5847):97-100
    [18] 刘洋荧,王尚,厉舒祯,等.基于功能基因的微生物碳循环分子生态学研究进展[J].微生物学通报,2017,44(7):1676-1689 LIU Yangying,WANG Shang,LI Shuzhen,et al.Advances in molecular ecology on microbial functional genes of carbon cycle[J].Microbiology China,2017,44(7):1676-1689
    [19] Wang C,Morrissey E M,Mau R L,et al.The temperature sensitivity of soil:microbial biodiversity,growth,and carbon mineralization[J].The ISME Journal,2021,15(9):2738-2747
    [20] 周虹霞,刘金娥,钦佩.外来种互花米草对盐沼土壤微生物多样性的影响:以江苏滨海为例[J].生态学报,2005(9):2304-2311 ZHOU Hongxia,LIU Jin'e,QIN Pei.Effects of an alien species (Spartina alterniflora) on soil microorganism diversity in salt marshes,Jiangsu coastal inter-tidal ecosystem[J].Acta Ecologica Sinica,2005(9):2304-2311
    [21] Chabbi A,Rumpel C,Grootes P M,et al.Lignite degradation and mineralization in lignite-containing mine sediment as revealed by 14C activity measurements and molecular analysis[J].Organic Geochemistry,2006,37(8):957-976
    [22] Wang Z J,Lu G X,Yuan M T,et al.Elevated temperature overrides the effects of N amendment in Tibetan grassland on soil microbiome[J].Soil Biology and Biochemistry,2019,136:107532
    [23] Xue K,Wu L Y,Deng Y,et al.Functional gene differences in soil microbial communities from conventional,low-input,and organic farmlands[J].Applied and Environmental Microbiology,2013,79(4):1284-1292
    [24] Ding J J,Zhang Y G,Deng Y,et al.Integrated metagenomics and network analysis of soil microbial community of the forest timberline[J].Scientific Reports,2015,5:7994
    [25] Zhou J Z,Xue K,Xie J P,et al.Microbial mediation of carbon-cycle feedbacks to climate warming[J].Nature Climate Change,2012,2(2):106-110
    [26] Song S S,Zhang C,Gao Y,et al.Responses of wetland soil bacterial community and edaphic factors to two-year experimental warming and Spartina alterniflora invasion in Chongming Island[J].Journal of Cleaner Production,2020,250:119502
    [27] Guo X P,Yang Y,Niu Z S,et al.Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze estuary and its coastal area,China[J].Science of the Total Environment,2019,648:306-314
    [28] Wu D M,Deng L L,Liu Y Z,et al.Comparisons of the effects of different drying methods on soil nitrogen fractions:insights into emissions of reactive nitrogen gases (HONO and NO)[J].Atmospheric and Oceanic Science Letters,2020,13(3):224-231
    [29] Shi Z,Yin H Q,van Nostrand J D,et al.Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities[J].mSystems,2019,4(4).DOI:10.1128/msystems.00296-19
    [30] Feng J J,Wang C,Lei J S,et al.Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J].Microbiome,2020,8(1):3
    [31] Rui J P,Li J B,Wang S P,et al.Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau[J].Applied and Environmental Microbiology,2015,81(17):6070-6077
    [32] Yang W,An S Q,Zhao H,et al.Labile and recalcitrant soil carbon and nitrogen pools in tidal salt marshes of the eastern Chinese coast as affected by short-term C4 plant Spartina alterniflora invasion[J].CLEAN-Soil,Air,Water,2015,43(6):872-880
    [33] Zhang G L,Bai J H,Jia J,et al.Soil organic carbon contents and stocks in coastal salt marshes with Spartina alterniflora following an invasion chronosequence in the Yellow River Delta,China[J].Chinese Geographical Science,2018,28(3):374-385
    [34] Huang L D,Zhang Y H,Shi Y M,et al.Comparison of phosphorus fractions and phosphatase activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve,China[J].Estuarine,Coastal and Shelf Science,2015,157:93-98
    [35] Song H L,Liu X T.Anthropogenic effects on fluxes of ecosystem respiration and methane in the Yellow River estuary,China[J].Wetlands,2016,36(1):113-123
    [36] Yuan J J,Ding W X,Liu D Y,et al.Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China[J].Global Change Biology,2015,21(4):1567-1580
    [37] Zhang G L,Bai J H,Zhao Q Q,et al.Bacterial succession in salt marsh soils along a short-term invasion chronosequence of Spartina alterniflora in the Yellow River estuary,China[J].Microbial Ecology,2020,79(3):644-661
    [38] Dostál P,Müllerová J,Pyšek P,et al.The impact of an invasive plant changes over time[J].Ecology Letters,2013,16(10):1277-1284
    [39] Vizza C,West W E,Jones S E,et al.Regulators of coastal wetland methane production and responses to simulated global change[J].Biogeosciences,2017,14(2):431-446
    [40] Feng W T,Liang J Y,Hale L E,et al.Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming[J].Global Change Biology,2017,23(11):4765-4776
    [41] Chen J,Sinsabaugh R L.Linking microbial functional gene abundance and soil extracellular enzyme activity:implications for soil carbon dynamics[J].Global Change Biology,2021,27(7):1322-1325
    [42] Chen J,Elsgaard L,van Groenigen K J,et al.Soil carbon loss with warming:new evidence from carbon-degrading enzymes[J].Global Change Biology,2020,26(4):1944-1952
    [43] Chen J,Luo Y Q,García-Palacios P,et al.Differential responses of carbon-degrading enzyme activities to warming:implications for soil respiration[J].Global Change Biology,2018,24(10):4816-4826
    [44] Li D J,Schädel C,Haddix M L,et al.Differential responses of soil organic carbon fractions to warming:results from an analysis with data assimilation[J].Soil Biology and Biochemistry,2013,67:24-30
    [45] Zhou X H,Luo Y Q,Gao C,et al.Concurrent and lagged impacts of an anomalously warm year on autotrophic and heterotrophic components of soil respiration:a deconvolution analysis[J].New Phytologist,2010,187(1):184-198
    [46] 祁秋艳,杨淑慧,仲启铖,等.崇明东滩芦苇光合特征对模拟增温的响应[J].华东师范大学学报(自然科学版),2012(6):29-38 QI Qiuyan,YANG Shuhui,ZHONG Qicheng,et al.Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in eastern Chongming Island,China[J].Journal of East China Normal University (Natural Science),2012(6):29-38
    [47] 谢宝华,韩广轩.外来入侵种互花米草防治研究进展[J].应用生态学报,2018,29(10):3464-3476 XIE Baohua,HAN Guangxuan.Control of invasive Spartina alterniflora:a review[J].Chinese Journal of Applied Ecology,2018,29(10):3464-3476
    [48] Tang Y S,Wang L,Jia J W,et al.Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover[J].Soil Biology and Biochemistry,2011,43(3):638-646
    [49] Zhang H X,Zheng S L,Ding J W,et al.Spatial variation in bacterial community in natural wetland-river-sea ecosystems[J].Journal of Basic Microbiology,2017,57(6):536-546
    [50] Cheung M K,Wong C K,Chu K H,et al.Community structure,dynamics and interactions of bacteria,archaea and fungi in subtropical coastal wetland sediments[J].Scientific Reports,2018,8:14397
    [51] Tripathi B M,Stegen J C,Kim M,et al.Soil pH mediates the balance between stochastic and deterministic assembly of bacteria[J].The ISME Journal,2018,12(4):1072-1083
    [52] Cong M Y,Cao D,Sun J K,et al.Soil microbial community structure evolution along halophyte succession in Bohai Bay wetland[J].Journal of Chemistry,2014,2014:491347
    [53] Kim S Y,Veraart A J,Meima-Franke M,et al.Combined effects of carbon,nitrogen and phosphorus on CH4 production and denitrification in wetland sediments[J].Geoderma,2015,259/260:354-361
    [54] 许鑫王豪,赵一飞,邹欣庆,等.中国滨海湿地CH4通量研究进展[J].自然资源学报,2015,30(9):1594-1605 XU Xinwanghao,ZHAO Yifei,ZOU Xinqing,et al.Advances in the research on methane emissions of coastal saline wetlands in China[J].Journal of Natural Resources,2015,30(9):1594-1605
    [55] 宫健,崔育倩,谢文霞,等.滨海湿地CH4排放的研究进展[J].资源科学,2018,40(1):173-184 GONG Jian,CUI Yuqian,XIE Wenxia,et al.Advances in research on methane emissions of coastal wetlands[J].Resources Science,2018,40(1):173-184
    [56] 韩雪,陈宝明.增温对土壤N2O和CH4排放的影响与微生物机制研究进展[J].应用生态学报,2020,31(11):3906-3914 HAN Xue,CHEN Baoming.Progress in the effects of warming on soil N2O and CH4 emission and the underlying microbial mechanisms[J].Chinese Journal of Applied Ecology,2020,31(11):3906-3914
    [57] Jiao Z H,Hou A X,Shi Y,et al.Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community[J].Communications in Soil Science and Plant Analysis,2006,37(13/14):1889-1903
    [58] Yue J,Shi Y,Liang W,et al.Methane and nitrous oxide emissions from rice field and related microorganism in black soil,northeastern China[J].Nutrient Cycling in Agroecosystems,2005,73(2/3):293-301
    [59] Tong C,Wang W Q,Huang J F,et al.Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland[J].Biogeochemistry,2012,111(1/2/3):677-693
    [60] Gaihre Y K,Wassmann R,Villegas-Pangga G.Impact of elevated temperatures on greenhouse gas emissions in rice systems:interaction with straw incorporation studied in a growth chamber experiment[J].Plant and Soil,2013,373(1/2):857-875
    [61] Cheng W G,Sakai H,Hartley A,et al.Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil[J].Global Change Biology,2008,14(3):644-656
    [62] Laine A M,Mehtätalo L,Tolvanen A,et al.Impacts of drainage,restoration and warming on boreal wetland greenhouse gas fluxes[J].Science of the Total Environment,2019,647:169-181
    [63] 仝川,闫宗平,王维奇,等.闽江河口感潮湿地入侵种互花米草甲烷通量及影响因子[J].地理科学,2008,28(6):826-832 TONG Chuan,YAN Zongping,WANG Weiqi,et al.Methane flux from invasive species (Spartina alterniflora) and influencing factors in the Min river estuary[J].Scientia Geographica Sinica,2008,28(6):826-832
    [64] Le Mer J,Roger P.Production,oxidation,emission and consumption of methane by soils:a review[J].European Journal of Soil Biology,2001,37(1):25-50
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓玲玲,王如海,吴电明.增温和互花米草入侵对崇明东滩湿地土壤碳循环功能基因的影响[J].南京信息工程大学学报(自然科学版),2022,14(1):62-76
DENG Lingling, WANG Ruhai, WU Dianming. Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(1):62-76

复制
分享
文章指标
  • 点击次数:435
  • 下载次数: 1553
  • HTML阅读次数: 121
  • 引用次数: 0
历史
  • 收稿日期:2021-12-12
  • 在线发布日期: 2022-04-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司