直流接地极地表电位的切比雪夫多项式求解法
作者:
作者单位:

国网河南省电力公司经济技术研究院

基金项目:

国家自然科学,项目批准号: 51607129,项目名称:考虑导通特性和故障工况的网内电势差时频域分析与模拟。


Solving Surface Potential of DC Grounding Electrode by Chebyshev Polynomial
Author:
Affiliation:

Economic and Technological Research Institute of State Grid Henan Electric Power Company

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    运行经验表明,直流接地极造成电网大范围直流偏磁危害其根源在不均匀地表电位分布。针对广域深度分层的复杂大地模型关于地表电位分布求解方面的难题,利用切比雪夫多项式拟合地表电位的汉克尔变换核函数。通过切比雪夫多项式的移位运算、系数展开和截断误差判定,得到了核函数的切比雪夫多项式自适应阶数拟合方法,从而大幅降低了直流接地极造成广大区域地表电位分布的计算难度。与标准接地计算软件CDEGS的水平8层结构大地算例对比表明,直流接地极入地电流5000A的情况下,方法在1km~100km地表范围内的地表电位偏差小于1V。进一步分析了切比雪夫多项式阶数对结果的影响,证实了20阶切比雪夫多项式的精度就可以满足一般的直流偏磁风险评估的应用需求。基于移位切比雪夫多项式的地表电位快速评估方法为直流偏磁风险评估提供了一种基础的技术手段,有助于降低电网直流偏磁风险评估的难度。

    Abstract:

    The operation experience shows that the root cause of the harm of large-scale DC magnetic bias caused by DC grounding electrode lies in the uneven surface potential distribution. The Chebyshev polynomial is used to fit the Hankel transform kernel function of surface potential in order to solve the problem of solving the surface potential distribution in the complex earth model of wide area depth stratification. Through the shift operation, coefficient expansion and truncation error determination of Chebyshev polynomial, the adaptive order fitting method of Chebyshev polynomial for kernel function is obtained, which greatly reduces the calculation difficulty of surface potential distribution in a large area caused by DC grounding electrode. Compared with the standard grounding calculation software CDEGS, the earth surface potential deviation is less than 1 V in the range of 1 km ~ 100 km when the DC grounding current is 5 000 A. The influence of the Chebyshev polynomial series on the results is further analyzed, and it is confirmed that the accuracy of the 20-order Chebyshev polynomial can meet the application requirements of the general DC bias risk assessment. The surface potential rapid assessment method based on the shifted Chebyshev polynomial provides a basic technical means for the risk assessment of DC bias, which is helpful to reduce the difficulty of risk assessment of DC bias in power grid.

    参考文献
    [1] 王泽忠, 刘 恪, 李明洋, 等. 特高压变压器直流偏磁“三变”联合仿真分析[J]. 高电压技术, 2020, 46(12), 4097-4105.
    [2] Wang Zezhong, Liu Ke, Li Mingyang, et al. Co-simulation and analysis of "three transformers" for UHV transformer under DC-bias[J]. High Voltage Engineering, 2020, 46(12), 4097-4105.
    [3] [2]郭满生. 变压器耐受直流偏磁电流数值的一点考虑[J]. 变压器, 2021, 58(03), 15-21.
    [4] Guo Mansheng. Analysis on Typhoon Resistance Ability of Prefabricated Substation[J]. TRANSFORMER, 2021, 58(03), 15-21
    [5] [3]李明洋, 张俊双, 李海明, 等. 500kV单相自耦变压器空载直流偏磁下的损耗和温升试验及分析[J]. 高压电器, 2021, 57(06), 132-139.
    [6] Li Mingyang, Zhang Junshuang, Li Haiming, et al. Loss and Temperature Rise Test and Analysis on 500 kV Single?phase Auto?transformer Under No?load DC Bias[J]. High Voltage Apparatus, 2021, 57(06), 132-139.
    [7] [4]戎子睿, 马书民, 林湘宁, 等. 一种多接地极主动互联及隔直装置协同的直流偏磁治理策略[J]. 电网技术, 2021, 45(09), 3453-3462.
    [8] Rong Zirui, Ma Shumin, Lin Xiangning, et al. Suppression Strategy of DC Bias Based on Coordination Between Grounding Electrodes Interconnecting and DC Blocking Devices[J]. Power System Technology, 2021, 45(09), 3453-3462.
    [9] [5]Pan Zhuohong, Wang Xiaomao, Tan Bo, et al. Potential compensation method for restraining the dc bias of transformers during HVDC monopolar operation[J]. IEEE Transactions on Power Delivery, 2016, 31(1), 103-111.
    [10] [6]Z. Xie, X. Lin, Z. Zhang, et al. Advanced DC Bias Suppression Strategy Based on Finite DC Blocking Devices[J]. IEEE Transactions on Power Delivery, 2017, 32(6), 2500-2509.
    [11] [7]Z. Wang, Z. Xie, C. Liu, et al. Novel DC Bias Suppression Device Based on Adjustable Parallel Resistances[J]. IEEE Transactions on Power Delivery, 2018, 33(4), 1787-1797.
    [12] [8]刘连光, 马成廉. 基于有限元方法的直流输电接地极多层土壤地电位分布计算[J]. 电力系统保护与控制, 2015, 43(18), 1-5.
    [13] Liu Lianguang, Ma Chenglian. Calculation of multi-layer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection and Control, 2015, 43(18), 1-5
    [14] [9]付振兴, 谭捍东, 刘慧芳, 等. 高压直流圆环形接地极电位数值模拟及影响因素分析[J]. 电网技术, 2016, 40(06), 1909-1915.
    [15] Fu zhenxing, Tan Zhendong, Liu Huifang, et al. Potential Numerical Simulation and Analysis of Influencing Factors of Toroidal HVDC Grounding Electrode[J]. Power System Technology, 2016, 40(06), 1909-1915
    [16] [10]Pan Zhuohong, Zhang Lu, Wang Xiaomao, et al. HVDC ground return current modeling in ac systems considering mutual resistances[J]. IEEE Transactions on Power Delivery, 2016, 31(1), 165-173.
    [17] [11]W. Li, Z. Pan, H. Lu, et al. Influence of Deep Earth Resistivity on HVDC Ground-Return Currents Distribution[J]. IEEE Transactions on Power Delivery, 2017, 32(4), 1844-1851.
    [18] [12]潘卓洪, 李嘉思, 刘曳君, 等. 分层土壤接地格林函数的多精度多分辨率计算[J]. 中国电机工程学报, 2019, 39(15), 4451-4459.
    [19] PAN Zhuohong, LI Jiasi, LIU Yejun, et al. Multi-precision-resolution computation of the Green’s function for the grounding problems of layered soils[J]. Proceedings of the CSEE, 2019, 39(15), 4451-4459.
    [20] [13]马成廉, 刘连光, 王乐天, 等. 高压直流输电接地极地电位分布ANSYS仿真[J]. 电网与清洁能源, 2017, 33(04), 19-26+33.
    [21] Ma Chenglian, Liu Lianguang, Wang Letian, et al. The ANSYS Simulation of HVDC Grounding Electrode Potential Distribution[J]. Power System and Clean Energy, 2017, 33(04), 19-26+33
    [22] [14]刘连光, 姜克如, 李洋, 等. 直流接地极近区三维大地电阻率模型建立方法[J]. 中国电机工程学报, 2018, 38(06), 1622-1630+1898.
    [23] LIU Lianguang, JIANG Keru, LI Yang, et al. Three-Dimensional Earth Resistivity Structure Modelling Around DC Ground Electrode[J]. Proceedings of the CSEE, 2018, 38(06), 1622-1630+1898
    [24] [15]李景丽, 栗超超, 冯鹏. 复杂土壤结构对流入变压器直流电流的影响分析[J]. 电瓷避雷器, 2020, 03), 34-42.
    [25] Li Jingli, Li Chaochao, Feng Peng. Analysis of the Influence of Complex Soil Structure on DC Current Flowing into Transformer[J]. Insulators and Surge Arresters, 2020, 03), 34-42
    [26] [16]司马文霞, 罗东辉, 袁涛, 等. 地表垂直落差对接地网接地电阻测量的影响及改善措施[J]. 高电压技术, 2018, 44(05), 1490-1498.
    [27] Sima Wenxia, Luo Donghui, Yuan Tao, et al. Influence of Vertical Drop of Soil on Grounding Resistance Measurement of Grounding Grid and the Improvement Measures[J]. High Voltage Engineering, 2018, 44(05), 1490-1498.
    [28] [17]熊奇, 王沐雪, 黄 浩, 等. 复杂地质情况下接地极土壤模型建立及研究[J]. 中国电机工程学报, 2020, 40(07), 2269-2277+2405.
    [29] Xiong Qi, Wang Muxue, Huang Hao, et al. Establishment of Earth Model for HVDC Earth Electrode in Complicated Terrain[J]. Proceedings of the CSEE, 2020, 40(07), 2269-2277+2405
    [30] [18]郭名文, 樊艳芳, 耿山, 等. 特高压直流接地极周边断裂结构对地表电位分布的影响研究[J]. 电力系统保护与控制, 2019, 47(02), 73-79.
    [31] Mingwen Guo, Yanfang Fan, and Shan Geng. Study on the effect of fracture structure adjacent to ground electrodes of UHVDC power transmission lines on earth surface potential distribution[J]. Power System Protection and Control, 2019, 47(02), 73-79.
    [32] [19]李景丽, 栗超超, 冯鹏. 异阻层状土壤对HVDC接地极散流性能的影响分析[J]. 电瓷避雷器, 2020, 294(02), 1-9.
    [33] Li Jingli, Li Chaochao, Feng Peng. Analysis of layered soil resistance effect on HVDC grounding diffuser performance[J]. Insulators and Surge Arresters, 2020, 294(02), 1-9
    [34] [20]耿山, 樊艳芳, 巩晓玲, 等. 特高压直流接地极周边地表电位分布计算与敏感性参数研究[J]. 高压电器, 2019, 55(03), 163-169.
    [35] Geng Shan, Fan Yanfang, Gong Xiaoling, et al. Calculation of Earth Surface Potential Around UHVDC Grounding Electrode and Analysis on Sensitive Parameters[J]. High Voltage Apparatus, 2019, 55(03), 163-169
    [36] [21]马成廉. 特高压直流接地极近区地电位分布特征研究[D], 华北电力大学(北京), 2020.
    [37] Chenglian Ma. Research on distribution characteristics of earth potential near UHVDC grounding electrode[D], North China Electric Power University (Beijing) , 2020
    [38] [22]李嘉思, 刘曳君, 潘卓洪, 等. 复杂土壤结构下直流接地极选址及直流偏磁风险评估[J]. 电测与仪表, 2021, 58(02), 13-18.
    [39] Li Jiasi, Liu Yijun, Pan Zhuohong, Site selection of DC grounding electrodes in complex soil and risk assessment of DC bias. [J]. Electrical Measurement & Instrumentation, 2021, 58(02), 13-18
    [40] [23]熊骜寒. 高速铁路不同路段综合接地系统钢轨电位与地表电位分析[D], 西南交通大学, 2017.
    [41] Xiong Aohan..Analysis of rail potential and surface potential of integrated grounding system in different sections of high speed railway[D], Southwest Jiaotong University, 2017
    [42] [24]王丰华, 王劭菁, 刘亚东, 等. 采用地表电位和磁感应强度进行变电站接地网故障诊断的效果对比[J]. 高电压技术, 2016, 42(07), 2281-2289.
    [43] Wang Fenghua, Wang Shaojing, Liu Yadong. Comparison of Substation Grounding Grid Fault Diagnosis Results Using Surface Potential and Magnetic Induction Intensity[J]. High Voltage Engineering, 2016, 42(07), 2281-2289.
    [44] [25]盛青, 王丰华, 盛连军, 等. 基于回声状态网络的接地网地表电位计算[J]. 高压电器, 2019, 55(03), 144-149+154.
    [45] Sheng Qing, Wang Fenghua, Sheng Lianjun. Calculation of Surface Potential Distribution of Grounding Grid Based on Echo State Network[J]. High Voltage Apparatus, 2019, 55(03), 144-149+154
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

齐桓若.直流接地极地表电位的切比雪夫多项式求解法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:53
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-12-15
  • 最后修改日期:2022-02-06
  • 录用日期:2022-03-01

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司