基于多头注意力卷积网络的电力负荷预测
DOI:
作者:
作者单位:

1.国网河南省电力公司经济技术研究院;2.河南九域腾龙信息工程有限公司;3.江苏省大数据分析技术重点实验室

作者简介:

通讯作者:

中图分类号:

TP 183

基金项目:

国家自然科学基金(61773219)


Power Load Prediction Based on Multi-Headed Attentional Con-volutional Network
Author:
Affiliation:

1.State Grid Henan Economics Research Institute,Zheng Zhou;2.Henan Tenglong Information Engineering Co., Ltd,Zheng Zhou;3.State Grid Henan Economics Research Institute;4.Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing University of Information Science and Technology,Nanjing

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    预测居民用电相当于预测一个多元时间序列。针对多个传感器信号的特定窗口能够利用预测模型提取不同的特征来预测用电量。然而,由于时间序列内部特征存在着不规则的模式,包括电力属性之间隐藏的相关性,使得负荷预测准确率不高。为了提取复杂的不规则电力模式,选择性地学习时空特征以减少电力属性间的平移方差,我们提出了一种基于多头注意力的卷积循环神经网络深度学习模型。相较于单纯的时间序列模型,该模型利用卷积和加权机制对电力属性和有功功率间的局部相关性进行建模。它利用softmax函数和点积运算的注意力分数来模拟电力需求的瞬态和脉冲特性,有效地对瞬时脉冲功耗进行预测。在美国加州大学欧文分校(University of California,Irvine,UCI)家庭用电数据集共2075259个时间序列上的实验表明,所提出的模型与目前最先进的深度学习模型相比,预测误差降低了31.01%。其中,多头注意力的预测性能比单头注意力提高了27.91%。

    Abstract:

    Predicting residential energy consumption is tantamount to forecasting a multivariate time series. A specific window for several sensor signals can induce various features extracted to forecast the energy consumption by using a predic-tion model. However, it is still a challenging task because of irregular patterns inside including hidden correlations between power attributes. In order to extract the complicated irregular energy patterns and selectively learn the spati-otemporal features to reduce the translational variance between energy attributes, we propose a deep learning model based on the multi-headed attention with the convolutional recurrent neural network. Compared with the simple time series model, the model uses convolution and weighting mechanism to model the local correlation between power attributes and active power. It exploits the attention scores calculated with softmax and dot product operation in the network to model the transient and impulsive nature of energy demand, predicting the instantaneous pulse power consumption effectively. Experiments with the dataset of University of California, Irvine (UCI) household electric power consumption consisting of a total 2,075,259 time-series show that the proposed model reduces the prediction error by 31.01% compared to the state-of-the-art deep learning model. Especially, the multi-headed attention im-proves the prediction performance even more by up to 27.91% than the single-attention.

    参考文献
    相似文献
    引证文献
引用本文

郑征,谭磊,周楠,韩军伟,高晶,翁理国.基于多头注意力卷积网络的电力负荷预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-29
  • 最后修改日期:2021-12-13
  • 录用日期:2021-12-15
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司