基于奇异摄动分解的固定翼无人机抗扰动滑模控制
作者:
作者单位:

南京信息工程大学自动化学院

基金项目:

国家自然科学基金(51875293),科技部重点研发计划(2018YFC1405703)资助课题


Anti disturbance sliding mode control of fixed wing UAV Based on singular perturbation decomposition
Author:
Affiliation:

1.School of automation,Nanjing University of Informantion Science and Technology;2.School of automation,Nanjing University of Information Science &3.amp;4.Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了提高固定翼无人机的飞行控制精度,减少系统动态耦合和外界干扰对固定翼无人机飞行控制系统的性能影响,建立固定翼无人机的奇异摄动模型,在此基础上提出基于干扰观测器的滑模控制方法。首先对固定翼无人机的速度和姿态进行动力学建模,将固定翼无人机的动力学模型转换为奇异摄动模型,再对奇异摄动模型进行快慢分解完成解耦,得到两个降阶非耦合子系统,即以角速度为快变量的快子系统和以速度、姿态为慢变量的慢子系统,分别对角速度回路和速度、姿态回路设计基于干扰观测器的滑模控制器。最后,用Simulink仿真验证了基于快、慢分解的固定翼无人机滑模控制方法的可行性和有效性。

    Abstract:

    In order to improve the flight control accuracy of fixed wing UAV and reduce the influence of system dynamic coupling and external disturbance on the performance of flight control system of fixed wing UAV. This paper proposed a singular perturbation model of fixed wing UAV and designed a sliding mode control method based on disturbance observer. Firstly, the velocity and attitude of the fixed wing UAV are modeled based on the dynamics of action.Then we transform the dynamic model of fixed wing UAV into singular perturbation model, and then the singular perturbation model is decomposed to complete decoupling. Two reduced order uncoupled subsystems are obtained which is the fast subsystem with angular velocity and the slow subsystem with linear velocity and attitude.The anti disturbance sliding mode controller is designed for angular velocity loop,angle and attitude loop respectively. Finally, the feasibility and effectiveness of the sliding mode control method based on fast and slow decomposition are verified by Simulink simulation.

    参考文献
    [1] Wang X K, Shen L C, Liu Z H, et al. Coor-dinated flight control of miniature fixed-wing UAV swarms: methods and experiments[J].Science China Informa-tion Sciences, 2019, 62(11): 212204.
    [2] 王力,祁浩然,穆东旭,等.固定翼无人机的二阶PID滑模控制方法[J].计算机仿真,2019,36(04):39-43.ang L,Qi H R,Mu D X,et al.Research on Longitudinal Attitude Con-trol of UAV Based on Second Order Sliding Mode [J]. Computer Simulation, 2019,36(04):39-43.
    [3] 宗群,张睿隆,董琦,等.固定翼无人机自适应滑模控制[J].哈尔滨工业大学学报,2018,50(09):147-155.Zong Q ,? Zhang R ,? Dong Q , et al. Adaptive sliding mode control for fixed-wing unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2018.
    [4] 蒲明, 吴庆宪, 姜长生, et al.新型快速Terminal滑模及其在近空间飞行器上的应用[J]. 航空学报, 2011, 32(007):1283-1291.ing P U ,? Qingxian W U ,? Jiang C . New Fast Terminal Sliding Mode and Its Application to Near Space Vehicles[J]. Acta Aeronautica Et Astronautica Sinica, 2011, 32(7):1283-1291.
    [5] Abid Raza,Fahad Mumtaz Malik,Rameez Khan,et al. Robust output feedback control of fixed-wing aircraft[J]. Aircraft Engineering and Aerospace Techno-logy,2020,92(8).
    [6] 戴诗正.奇异摄动理论[J].系统工程与电子技术,1988(02):1-12.
    [7] 许璟, 蔡晨晓, 李勇奇,等.小型四旋翼无人机双闭环轨迹跟踪与控制[J]. 控制理论与应用, 2015, 32(010):1335-1342Xu J ,? Cai C X ,? Li Y Q , et al. Dual-loop path tracking and control for quad-rotor miniature unmanned aerial vehicles[J]. control theory applications, 2015.
    [8] Ren W, Jiang B, Yang H. A survey on singular perturbation theory in aerospace application[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2016: 675-680.
    [9] Shan S, Hou Z, Wang W. Aircraft longitudinal decoupling based on a singular perturbation approach[J]. Advances in Mechanical Engineering, 2017, 9(9): 1687814017727474.
    [10] 胡跃明. 变结构控制理论与应用[M]. 科学出版社, 2003.
    [11] Zhang C, Zhang G, Dong Q. Multi‐variable finite‐time observer‐based adaptive‐gain sliding mode control for fixed‐wing UAV[J]. IET Control Theory Applications, 2021.
    [12] Ahmed A . Sliding mode control for sing-ularly perturbed systems.[D]. Carleto n University (Canada).? 2005.
    [13] 英)理查德·布洛克利 (Richard Blockl ey), 美) 史维 (Wei Shyy). 航空航天技术出版工程. 7, 飞行器设计[M]. 北京理工大学出版社, 2016.
    [14] Phillips K ,? Campa G ,? Gururajan S ,et al.Parameter Identification for Applic ation within a Fault-Tolerant Flight Con trol System[C]// 2013.
    [15] Garcia-Baquero L, Esteban S, Raffo G V. Singular perturbation control for the longitudinal and lateral-directional flight dynamics of a uav[J]. IFAC-PapersOnLine, 2018, 51(12): 124-129.
    [16] Esteban S, Gavilan F, Acosta J A. Singular perturbation control of the lateral-directional flight dynamics of an UAV[J]. IFAC-PapersOnLine, 2015, 48(9): 120-125.
    [17] 于靖, 陈谋, 姜长生. 基于干扰观测器的非线性不确定系统自适应滑模控制[J].控制理论与应用, 2014, 31(008):993-999.Yu J ,? Chen M ,? Jiang C S . Adaptive sliding mode control for nonlinear uncertain systems based on disturbance observer[J]. Control Theory Applications, 2014.
    [18] Nair S V ,? Lakhekar G V ,? Panchade V M . Fuzzy sliding mode control approach for two time scale system: Stability issues[C]// 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE, 2016.
    [19] Nagarale RM , Patre BM. Composite fu zzy sliding mode control of nonlinear singularly perturbed systems[J]. Isa Transactions, 2014, 53(3):679-689.
    [20] Lochan K ,? Singh J P ,? Roy B K , et al. Design of a Composite Control in Two-Time Scale Using Nonlinear Disturbance Observer-Based SMC and Backstepping Control of a Two-Link Flexible Man ipulator[J]. New Trends in Observer-based Control, 2019:155-183.
    [21] 卜祥伟,吴晓燕,陈永兴,白瑞阳.基于非线性干扰观测器的高超声速飞行器滑模反演控制[J].控制理论与应用,2014,31(11):1473-1479.XW Bu, XY Wu, YX Chen,等. Nonlinear-disturbance-observer-based sliding mode backstepping control of hypersonic vehicles[J]. Control Theory Applications, 2014.
    [22] 闵颖颖, 刘允刚. Barbalat引理及其在系统稳定性分析中的应用[J]. 山东大学学报:工学版, 2007, 37(1):51-55.Min Y Y ,? Liu Y G . Barbalat Lemma and its application in analysis of system stability[J]. Journal of Shandong University(Engineering ence), 2007.作者简介梅? 平(1981-),女,副教授,目前研究方向为奇异摄动理论、时滞系统,非线性系统的分析与控制。Email: meiping1007@163.com手机:13770675487 固话:无地址:江苏省南京信息工程大学自动化学院???????? ? 邮编:210044身份证号码:413023198101160063002099@nuist.edu.cn朱涵智(1996-),男,硕士研究生,目前研究方向为固定翼无人机控制系统研究、协同编队控制。Email::zhuhanzhi@outlook.com手机:13092389705??? 固话:无地址:江苏省南京信息工程大学自动化学院 ????????????? 邮编:210044刘云平(1979-),男,教授,目前研究方向为智能机器人,集群智能,仪器装备等。Email: 20792786@qq.com手机:13913316437 固话:无地址:江苏省南京信息工程大学自动化学院 邮编:210044苏东彦(1993-),男,硕士研究生,目前研究方向为无人机智能控制、室内无人机定位导航,Email: jsjjsdy@126.com手机:15077882846赵 迅(1995-),男,硕士研究生目前研究方向为多无人机协同导航控制研究。Email: zhaoxuncn@163.com手机:15605286897地址:江苏省南京信息工程大学自动化学院邮编210044
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梅 平,张豪,朱涵智,苏东彦,赵 迅.基于奇异摄动分解的固定翼无人机抗扰动滑模控制[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:94
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-10-19
  • 最后修改日期:2022-08-16
  • 录用日期:2022-08-18

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司