利用多系统GNSS干涉反射测量估计长江巴东水位变化
作者:
中图分类号:

P228.4;TV697.2

基金项目:

中国科学院战略性先导科技专项(A类)(XDA23040100)


Water level changes at Badong station of the Yangtze River from multi-GNSS interferometric reflectomery
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    水位信息是研究水循环、气候和生态环境变化的重要参数, 近实时、高精度地监测其变化具有重要的意义.传统水位计测量成本高、范围小, 且是相对水位测量.全球导航卫星系统干涉反射测量(GNSS-IR)利用岸边架设的GNSS接收机所获取的信噪比(SNR)数据估计水位变化, 为水位测量提供了一种新的监测方法, 具有全天候、高精度和近实时等优点.本文利用长江上游巴东多系统GNSS观测站采集30 d的GPS、BDS以及GLONASS系统SNR数据, 反演了水位变化, 并和水位站进行比对, 结果表明GNSS-IR获得厘米级的水位反演精度, RMSE最低为6.43 cm.GPS和GLONASS系统L1频段以及BDS系统B1频段估计结果较好, GLONASS系统L2频段的反演精度低于其他频段.联合不同GNSS系统估计水位变化, 提高了GNSS-IR反演水位的时间分辨率.

    Abstract:

    Water level information is an important parameter for studying changes in the water cycle, even the climate and ecological environments.It is of great significance to monitor the water level changes in near real-time and with high precision.However, traditional water level gauge is a relative water level measurement approach in a small range and has a high cost.The Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) uses the Signal-to-Noise Ratio (SNR) data from the GNSS receiver installed on the coast to estimate the water level change, which provides a new monitoring approach for water level measurement with high accuracy and near real-time.Here, 30 days of GPS, BDS and GLONASS SNR data from a multi-GNSS station at Badong station in the upper reaches of the Yangtze River are used to estimate the water level changes, which are then compared with the in-suit water level station observations.The results show that GNSS-IR obtains centimeter-level water level results with the minimum RMSE of 6.43 cm.The estimation results of GPS and GLONASS system at L1 frequency and BDS system at B1 frequency are better, and the accuracy of GLONASS L2 frequency is lower than that of other frequencies.The joint multi-GNSS system improves the time resolution of GNSS-IR estimation of water level changes.

    参考文献
    [1] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8 NING Jinsheng, YAO Yibin, ZHANG Xiaohong. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning, 2013, 1(1): 3-8
    [2] 万玮, 陈秀万, 李国平, 等. GNSS-R遥感国内外研究进展[J]. 遥感信息, 2012, 27(3): 112-119 WAN Wei, CHEN Xiuwan, LI Guoping, et al. GNSS reflectometry: a review of theories and empirical applications in ocean and land surfaces[J]. Remote Sensing Information, 2012, 27(3): 112-119
    [3] 刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报·信息科学版, 2007, 32(11): 955-960 LIU Jingnan, SHAO Lianjun, ZHANG Xunxie. Advances in GNSS-R studies and key technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 955-960
    [4] Hall C D, Cordey R A. Multistatic scatterometry[C]//International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'. September 12-16, 1988, Edinburgh, UK. IEEE, 1988: 561-562
    [5] Martin-Neira M. A passive reflectometry and interferometry system (PARIS) application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355
    [6] Martin-Neira M, Colmenarejo P, Runi G, et al. Ocean altimetry using the carrier phase of GNSS reflected signals[J]. Cersat Journal, 2000, 11(22): 1-10
    [7] Martin-Neira M, Caparrini M, Font-Rossello J, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 142-150
    [8] Larson K M, Ray R D, Nievinski F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204
    [9] Löfgren J S, Haas R. Sea level measurements using multi-frequency GPS and GLONASS observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-13
    [10] Chen F D, Liu L L, Guo F. Sea surface height estimation with multi-GNSS and wavelet de-noising[J]. Scientific Reports, 2019, 9(1): 1-10
    [11] 南阳, 张双成, 黄亮, 等. GPS-IR技术用于河水面测高实验分析[J]. 导航定位与授时, 2020, 7(2): 126-131 NAN Yang, ZHANG Shuangcheng, HUANG Liang, et al. Analysis of GPS-IR water level altimetry experiment on river[J]. Navigation Positioning and Timing, 2020, 7(2): 126-131
    [12] 李婷, 张显云, 邓小东, 等. 顾及多径环境差异和粗差的GNSS-MR土壤湿度反演[J]. 遥感学报, 2021, 25(6): 1324-1337 LI Ting, ZHANG Xianyun, DENG Xiaodong, et al. GNSS-MR soil moisture retrieval considering the multipath environments differences and gross error[J]. National Remote Sensing Bulletin, 2021, 25(6): 1324-1337
    [13] Jin S G, Qian X D, Wu X. Sea level change from BeiDou navigation satellite system-reflectometry (BDS-R): first results and evaluation[J]. Global and Planetary Change, 2017, 149: 20-25
    [14] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398 JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398
    [15] 徐宁辉, 覃继前, 陆杰, 等. 基于GNSS-R的城市近海岸水位高度反演研究[J]. 城市勘测, 2021(3): 52-57 XU Ninghui, QIN Jiqian, LU Jie, et al. Research on retrieval of water level height in urban coast based on GNSS-R[J]. Urban Geotechnical Investigation & Surveying, 2021(3): 52-57
    [16] 张驰, 张书毕, 陈国栋. GNSS-R水位反演的技术精度研究[J]. 测绘科学, 2020, 45(6): 31-36 ZHANG Chi, ZHANG Shubi, CHEN Guodong. Research on the technical accuracy of GNSS-R water level inversion[J]. Science of Surveying and Mapping, 2020, 45(6): 31-36
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈昊晟,金双根,业明达,郭孝祖.利用多系统GNSS干涉反射测量估计长江巴东水位变化[J].南京信息工程大学学报(自然科学版),2021,13(6):686-692
CHEN Haosheng, JIN Shuanggen, YE Mingda, GUO Xiaozu. Water level changes at Badong station of the Yangtze River from multi-GNSS interferometric reflectomery[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(6):686-692

复制
分享
文章指标
  • 点击次数:460
  • 下载次数: 1618
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-01
  • 在线发布日期: 2022-01-21

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司