基于线框分析方法的建筑物主体模型智能构建
作者:
中图分类号:

P225.2;TU317

基金项目:

国家自然科学基金(42171433, 41701529);江苏省高等学校自然科学研究项目(17KJB420004)


Intelligent construction of main building structure model based on wireframe analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    空间信息获取技术的发展推动了三维点云数据的建筑模型构建研究.然而, 现有的模型构建方法大多依赖人工交互的方式, 极高的人工和时间成本消耗不利于大范围城市模型的构建及应用.针对上述问题, 本文提出一种基于线框分析的建筑物主体模型构建方法.首先对原始建筑物点云进行滤波与归一化处理, 并提取建筑物的多层次边界多边形综合描述建筑边界结构; 然后将各层次边界多边形分割出简单、易控的多个矩形基元, 采用稳健的层次化矩形连接、分析算法生成完整的建筑物主体结构模型; 最后通过对三组结构复杂、遮挡严重的建筑物点云数据的实验表明该方法具有良好的性能, 可以稳健地处理存在数据缺失、点密度差异的建筑物点云数据, 并且兼顾了建筑物不同高度上的结构差异性, 实现了建筑物线框模型的高精度构建.

    Abstract:

    Architectural models can be constructed from 3D point cloud data due to the advances in spatial information acquisition technology.However, most of the existing model construction methods rely on manual interaction, which is extremely laborious and time consuming, thus are not applicable to the construction of large-scale urban models and related applications.This paper proposes an approach to build the main structure model based on wireframe analysis.First, filter and normalize the original building point cloud, and extract the multi-level boundary polygons of the building to comprehensively describe the building boundary structure; then divide the boundary polygons at each level into multiple rectangular primitives that are simple and easy to control.A robust hierarchical rectangular connection and analysis algorithm is used to generate a complete main structure model of the building.Finally, experiments on three sets of complex structure and severely occluded building point cloud data show that the approach has good performance and can robustly handle the point cloud data of buildings with missing data and different point density.The proposed approach takes into account the structural differences at different heights of the building, and realizes the high-precision construction of the wireframe model for the main building structure.

    参考文献
    [1] Hu P B, Yang B S, Dong Z, et al. Towards reconstructing 3D buildings from ALS data based on gestalt laws[J]. Remote Sensing, 2018, 10(7): 1127
    [2] Pandey J, Sharma O. Fast and robust construction of 3D architectural models from 2D plans[C]//International Conference on Computer Graphics, Visualization and Computer Vision. May 30-June 3, 2016. Plzen, Czech. 2016: 335-341
    [3] Zhou Y C, Qi H Z, Zhai Y X, et al. Learning to reconstruct 3D Manhattan wireframes from a single image[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Oct 27-Nov 3, 2019. Seoul, South Korea. 2019: 7698-7707
    [4] Jung J, Sohn G, Bang K, et al. Matching aerial images to 3D building models using context-based geometric hashing[J]. Sensors, 2016, 16(6): 932
    [5] Xiao J, Gerke M, Vosselman G. Building extraction from oblique airborne imagery based on robust facade detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68: 56-68
    [6] 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12): 1575-1585 YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1575-1585
    [7] 孙轩, 杨必胜, 李清泉. 基于结构的三维建筑物模型多分辨率表达[C]//中国地理信息科学理论与方法学术年会, 2013: 44
    [8] Wu Z J, Xiao S J. Mesh decomposition using skeleton and fuzzy clustering[J]. International Journal of Machine Learning and Computing, 2013, 3(5): 453-457
    [9] Yang J, Wang B, Wang M Z, et al. Unsupervised co-segmentation of 3D shapes based on components[C]//Proceedings of the 2nd International Conference on Computer Science and Software Engineering. May 24-26, 2019. Xi'an, China. 2019: 89-95
    [10] Aubry M, Schlickewei U, Cremers D. Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011: 122-131
    [11] Shu Z Y, Qi C W, Liu L G, et al. Unsupervised 3D shape segmentation and co-segmentation via deep learning[J]. Computer Aided Geometric Design, 2016, 43: 39-52
    [12] Wang P Y, Gan Y, Shui P P, et al. 3D shape segmentation via shape fully convolutional networks[J]. Computers & Graphics, 2018, 76: 182-192
    [13] Rusu R B, Cousins S. 3D is here: point cloud library (PCL)[C]//2011 IEEE international conference on robotics and automation. May 9-13, 2011. Shanghai, China. IEEE, 2011: 1-4
    [14] 王方建. 基于地面激光点云数据的建筑物模型自动化重建研究[D]. 北京: 中国科学院遥感与数字地球研究所, 2019 WANG Fangjian. Study on automation reconstruction of building model using terrestrial laser scanning data[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2019
    [15] Tran H, Khoshelham K, Kealy A. Geometric comparison and quality evaluation of 3D models of indoor environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149: 29-39
    相似文献
    引证文献
引用本文

王贲文,臧玉府,黄奕舒.基于线框分析方法的建筑物主体模型智能构建[J].南京信息工程大学学报(自然科学版),2021,13(6):669-677
WANG Benwen, ZANG Yufu, HUANG Yishu. Intelligent construction of main building structure model based on wireframe analysis[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(6):669-677

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-03
  • 在线发布日期: 2022-01-21

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司