基于车载激光点云的道路交叉口检测与识别
作者:
中图分类号:

P208

基金项目:

国家自然科学基金(42071446);福建省对外合作项目(2020I0007)


Road intersection detection and recognition based on mobile laser scanning
Author:
  • FANG Lina

    FANG Lina

    National Engineering Research Centre of Geospatial Information Technology, Fuzhou University, Fuzhou 35000;Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou University, Fuzhou 350002;Academy of Digital China, Fuzhou University, Fuzhou 350002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Kang

    WANG Kang

    National Engineering Research Centre of Geospatial Information Technology, Fuzhou University, Fuzhou 35000;Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou University, Fuzhou 350002;Academy of Digital China, Fuzhou University, Fuzhou 350002
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    道路交叉口是道路交通网的重要组成部分, 其位置和类型是高精地图、自动驾驶等应用服务的基础数据.目前研究多关注车载激光点云的道路边界提取, 较少关注道路交叉口类型识别.为此, 本文提出一种基于动态图神经网络的道路交叉口分类方法.首先分析地面超体素的几何和空间分布差异进行提取道路边界点; 然后计算道路边界点曲率, 利用滑动窗口中曲率差异检测道路交叉口; 最后构建动态图神经网络识别出"T"型和"十"型道路交叉口.实验采用两份不同车载激光点云数据验证本文方法的有效性, 实验结果表明, 该方法能准确检测绝大多数道路交叉口位置及类型.

    Abstract:

    Road intersections are important parts of road traffic network, the location and type of which are the basic data for various application services such as high-definition map and automatic driving.However, little attention has been paid to classify road intersections compared with the great number of researches on the road boundary extraction from mobile laser scanning point clouds.Here, we propose a road intersection classification method based on dynamic graph neural network.First, we employ geometric and spatial distribution differences of supervoxels to extract road boundaries from ground.Then we calculate the curvature of road boundary points and detect road intersections according to the curvature difference in sliding windows.Finally, we build a dynamic graph neural network to identify the T junction and regular intersections.The experimental results show the proposed method can accurately detect most road intersections.

    参考文献
    [1] Olayode I O, Tartibu L K, Okwu M O, et al. Comparative traffic flow prediction of a heuristic ANN model and a hybrid ANN-PSO model in the traffic flow modelling of vehicles at a four-way signalized road intersection[J]. Sustainability, 2021, 13(19): 10704
    [2] Liu M S, Zhang L, Ge J L, et al. Map matching for urban high-sampling-frequency GPS trajectories[J]. ISPRS International Journal of Geo-Information, 2020, 9(1): 31
    [3] 沈强儒, 杨少伟, 曹慧, 等. 立交区域交叉口交通信息识别概率预测[J]. 哈尔滨工业大学学报, 2020, 52(9): 152-158 SHEN Qiangru, YANG Shaowei, CAO Hui, et al. Prediction for recognition probability of traffic information at intersection of interchanges[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 152-158
    [4] Zhang J X, Xiao W, Coifman B, et al. Vehicle tracking and speed estimation from roadside lidar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5597-5608
    [5] Dai J G, Wang Y, Li W T, et al. Automatic method for extraction of complex road intersection points from high-resolution remote sensing images based on fuzzy inference[J]. IEEE Access, 2020, 8: 39212-39224
    [6] 曹闻, 李润生. 利用可变形部件模型检测遥感影像道路交叉口[J]. 武汉大学学报·信息科学版, 2018, 43(3): 413-419 CAO Wen, LI Runsheng. Road intersections detection using deformable part models on remote sensing image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 413-419
    [7] 蔡红玥, 姚国清. 高分辨率遥感图像道路交叉口自动提取[J]. 国土资源遥感, 2016, 28(1): 63-71 CAI Hongyue, YAO Guoqing. Auto-extraction of road intersection from high resolution remote sensing image[J]. Remote Sensing for Land & Resources, 2016, 28(1): 63-71
    [8] Hu J X, Razdan A, Femiani J C, et al. Road network extraction and intersection detection from aerial images by tracking road footprints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4144-4157
    [9] Wang C, Hao P, Wu G Y, et al. Intersection and stop bar position extraction from vehicle positioning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, PP(99): 1-12
    [10] 万子健, 李连营, 杨敏, 等. 车辆轨迹数据提取道路交叉口特征的决策树模型[J]. 测绘学报, 2019, 48(11): 1391-1403 WAN Zijian, LI Lianying, YANG Min, et al. Decision tree model for extracting road intersection feature from vehicle trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1391-1403
    [11] Li Q Q, Chen L, Zhu Q W, et al. Intersection detection and recognition for autonomous urban driving using a virtual cylindrical scanner[J]. IET Intelligent Transport Systems, 2014, 8(3): 244-254
    [12] Zhang Y H, Wang J, Wang X N, et al. Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR sensor[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3981-3991
    [13] 陈卓, 马洪超, 李云帆. 结合角度纹理信息和Snake方法从LiDAR点云数据中提取道路交叉口[J]. 国土资源遥感, 2013, 25(4): 79-84 CHEN Zhuo, MA Hongchao, LI Yunfan. Extraction of road intersection from LiDAR point cloud data based on ATS and Snake[J]. Remote Sensing for Land & Resources, 2013, 25(4): 79-84
    [14] Chen Z, Liu C, Wu H B. A higher-order tensor voting-based approach for road junction detection and delineation from airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 91-114
    [15] Baumann U, Huang Y Y, Gläser C, et al. Classifying road intersections using transfer-learning on a deep neural network[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). November 4-7, 2018, Maui, HI, USA. IEEE, 2018: 683-690
    [16] 何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3): 385-395 HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 385-395
    [17] 王龙飞, 刘智, 金飞, 等. 道路交叉口自动检测算法的研究[J]. 测绘科学, 2020, 45(5): 126-131, 146 WANG Longfei, LIU Zhi, JIN Fei, et al. Research on automatic recognition algorithm of road intersection[J]. Science of Surveying and Mapping, 2020, 45(5): 126-131, 146
    [18] Zhang W M, Qi J B, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501
    [19] Lin Y B, Wang C, Zhai D W, et al. Toward better boundary preserved supervoxel segmentation for 3D point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 39-47
    [20] Wang Y, Sun Y B, Liu Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

方莉娜,王康.基于车载激光点云的道路交叉口检测与识别[J].南京信息工程大学学报(自然科学版),2021,13(6):635-644
FANG Lina, WANG Kang. Road intersection detection and recognition based on mobile laser scanning[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(6):635-644

复制
分享
文章指标
  • 点击次数:265
  • 下载次数: 1678
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-01
  • 在线发布日期: 2022-01-21

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司