噪声采样区间下具有随机短时滞的网络化系统镇定研究
作者:
中图分类号:

TP273

基金项目:

国家自然科学基金(62003204,62073144)


Stabilization of networked systems with stochastic time-varying short delays: the noisy sampling intervals case
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在实际工程中,网络化控制系统的采样间隔往往受到不可预知的物理约束,而这会导致噪声采样区间,也就是实际采样区间以一定的概率分布围绕着理想采样周期随机波动.本文研究噪声采样区间下具有随机短时滞的网络化系统镇定问题.首先利用离散时间方法建立一个闭环随机系统模型,但由于采样噪声和时变短时滞都具有随机性,因此,闭环随机系统模型的系统矩阵具有高度非线性和双重随机性.为了解决系统矩阵的高度非线性和双重随机性给镇定控制器设计带来的困难,本文利用汇合范德蒙矩阵方法和克罗内克积运算,计算出与系统矩阵相关的三个矩阵乘积的数学期望.在此基础上,本文得到了保证闭环系统随机稳定的充分条件.与此同时,通过求解线性矩阵不等式设计了镇定控制器.最后,通过两个仿真算例,验证了此设计方法的有效性.

    Abstract:

    In practical engineering, the sampling intervals of networked control systems are often subject to undesirable physical constraints, which results in noisy sampling intervals.In view of this, we focus on the stabilization of networked control systems with noisy sampling intervals and stochastic time-varying delays.First, a closed-loop stochastic system model, whose system matrix is characterized by high nonlinearity and dual randomness, is obtained by considering the noisy sampling intervals and stochastic time-varying delays in a unified framework.In order to deal with the difficulties arising from the nonlinearity and dual randomness of the system matrices, the confluent Vandermonde matrix approach and Kronecker product operation are utilized, and then the mathematical expectations of the product of three matrices related to the system matrices are calculated.Based on this, a sufficient condition for stochastic stability of the closed-loop system is obtained, and a stabilization controller is designed by solving a linear matrix inequality.Finally, two examples are provided to verify the effectiveness of the designed method.

    参考文献
    [1] Hu L S,Bai T,Shi P,et al.Sampled-data control of networked linear control systems[J].Automatica,2007,43(5):903-911
    [2] Zhang W A,Yu L.Stabilization of sampled-data control systems with control inputs missing[J].IEEE Transactions on Automatic Control,2010,55(2):447-452
    [3] You K Y,Xie L H.Survey of recent progress in networked control systems[J].Acta Automatica Sinica,2013,39(2):101-117
    [4] You K Y,Xiao N,Xie L H.Analysis and design of networked control systems[M].London:Springer London,2015
    [5] Li H Y,Sun X J,Shi P,et al.Control design of interval type-2 fuzzy systems with actuator fault:sampled-data control approach[J].Information Sciences,2015,302:1-13
    [6] Hu Z P,Deng F Q,Xing M L,et al.Modeling and control of itô stochastic networked control systems with random packet dropouts subject to time-varying sampling[J].IEEE Transactions on Automatic Control,2017,62(8):4194-4201
    [7] Zhang W B,Han Q L,Tang Y,et al.Sampled-data control for a class of linear time-varying systems[J].Automatica,2019,103:126-134
    [8] Zhao N,Shi P,Xing W,et al.Observer-based event-triggered approach for stochastic networked control systems under denial of service attacks[J].IEEE Transactions on Control of Network Systems,2021,8(1):158-167
    [9] Antunes D J,Qu H M.Frequency-domain analysis of networked control systems modeled by Markov jump linear systems[J].IEEE Transactions on Control of Network Systems,2021,8(2):906-916
    [10] Hu S L,Yue D,Liu J L.H filtering for networked systems with partly known distribution transmission delays[J].Information Sciences,2012,194:270-282
    [11] Hu Z P,Deng F Q.Robust H control for networked systems with transmission delays and successive packet dropouts under stochastic sampling[J].International Journal of Robust and Nonlinear Control,2017,27(1):84-107
    [12] Tan C,Zhang H S,Wong W S,et al.Feedback stabilization of uncertain networked control systems over delayed and fading channels[J].IEEE Transactions on Control of Network Systems,2021,8(1):260-268
    [13] Zhang W A,Yu L.A robust control approach to stabilization of networked control systems with short time-varying delays[J].Acta Automatica Sinica,2010,36(1):87-91
    [14] Zhang H G,Zhang Z,Wang Z L,et al.New results on stability and stabilization of networked control systems with short time-varying delay[J].IEEE Transactions on Cybernetics,2016,46(12):2772-2781
    [15] Hua C C,Yu S C,Guan X P.Finite-time control for a class of networked control systems with short time-varying delays and sampling jitter[J].International Journal of Automation and Computing,2015,12(4):448-454
    [16] Shi T,Shi P,Wang S Y.Robust sampled-data model predictive control for networked systems with time-varying delay[J].International Journal of Robust and Nonlinear Control,2019,29(6):1758-1768
    [17] van Horssen E,Prakash S,Antunes D,et al.Event-driven control with deadline optimization for linear systems with stochastic delays[J].IEEE Transactions on Control of Network Systems,2018,5(4):1819-1829
    [18] Nilsson J,Bernhardsson B,Wittenmark B.Stochastic analysis and control of real-time systems with random time delays[J].Automatica,1998,34(1):57-64
    [19] Hu S S,Zhu Q X.Stochastic optimal control and analysis of stability of networked control systems with long delay[J].Automatica,2003,39(11):1877-1884
    [20] Pipeleers G,Demeulenaere B,de Schutter J,et al.Robust high-order repetitive control:optimal performance trade-offs[J].Automatica,2008,44(10):2628-2634
    [21] Shen B,Wang Z D,Huang T W.Stabilization for sampled-data systems under noisy sampling interval[J].Automatica,2016,63:162-166
    [22] Shen B,Tan H L,Wang Z D,et al.Quantized/saturated control for sampled-data systems under noisy sampling intervals:a confluent Vandermonde matrix approach[J].IEEE Transactions on Automatic Control,2017,62(9):4753-4759
    [23] Hu Z P,Ren H R,Shi P.Synchronization of complex dynamical networks subject to noisy sampling interval and packet loss[J].IEEE Transactions on Neural Networks and Learning Systems,2021,99:1-11
    [24] Fridman E,Seuret A,Richard J P.Robust sampled-data stabilization of linear systems:an input delay approach[J].Automatica,2004,40(8):1441-1446
    [25] Oishi Y,Fujioka H.Stability and stabilization of aperiodic sampled-data control systems using robust linear matrix inequalities[J].Automatica,2010,46(8):1327-1333
    [26] Naghshtabrizi P,Hespanha J P,Teel A R.Exponential stability of impulsive systems with application to uncertain sampled-data systems[J].Systems & Control Letters,2008,57(5):378-385
    [27] He W L,Zhang B,Han Q L,et al.Leader-following consensus of nonlinear multiagent systems with stochastic sampling[J].IEEE Transactions on Cybernetics,2017,47(2):327-338
    [28] Christer A H,Waller W M.Reducing production downtime using delay-time analysis[J].Journal of the Operational Research Society,1984,35(6):499-512
    [29] Attia A F.Estimation of the reliability function using the delay-time models[J].Microelectronics Reliability,1997,37(2):323-327
    [30] Zhao J P,Gao X W.Time-delay analysis and estimation of internet-based robot teleoperation system[C]//2009 Chinese Control and Decision Conference.June 17-19,2009,Guilin,China.IEEE,2009:4643-4646
    [31] Xu S Y,Lam J,Chen T W.Robust H control for uncertain discrete stochastic time-delay systems[J].Systems & Control Letters,2004,51(3/4):203-215
    [32] Zhang W,Branicky M S,Phillips S M.Stability of networked control systems[J].IEEE Control Systems Magazine,2001,21(1):84-99
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡志佩,苏永康,邓飞其.噪声采样区间下具有随机短时滞的网络化系统镇定研究[J].南京信息工程大学学报(自然科学版),2021,13(5):509-516
HU Zhipei, SU Yongkang, DENG Feiqi. Stabilization of networked systems with stochastic time-varying short delays: the noisy sampling intervals case[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(5):509-516

复制
分享
文章指标
  • 点击次数:131
  • 下载次数: 1630
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-09-10
  • 在线发布日期: 2021-12-02

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司