基于改进混合蛙跳算法的个性化旅游路线推荐
作者:
中图分类号:

TP182

基金项目:

国家自然科学基金(61502239,51705260);江苏省自然科学基金(BK20150924)


Personalized travel route recommendation based on an improved shuffled frog leaping algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    大众在旅游途中期望获得开销低、行程方便、舒适度高的旅游体验,同时还具有历史人文、自然景观、美食购物等不同游览需求.因此,本文提出了一种基于改进混合蛙跳算法的个性化旅游路线推荐方法.首先建立个性化旅游路线推荐问题的优化模型,并针对该模型的特点,设计改进混合蛙跳算法.通过调整可控精度,增加筛选准则和及时处理异常解等策略增强群体的多样性,降低遗漏最优解的风险,强化局部搜索能力,并提高算法的求解精度.以南京三日游个性化旅游路线推荐问题作为实例,收集南京市内知名景点的门票价格、开放时间、不同出行方式所需的时间和花费情况以及食宿费用等相关数据,基于改进混合蛙跳算法进行求解.实验结果表明,与改进前的方法相比,所提改进方法能够获取更优的路径解,推荐的路线能够更好地满足用户的个性需求.

    Abstract:

    Tourists expect to get travel experiences like low-cost, convenient itinerary, high comfort and so on.Meanwhile, they have different tourist interests such as history and culture, natural landscape, food and shopping, etc.Therefore, a personalized travel route recommendation method based on an improved shuffled frog leaping algorithm is proposed in this paper.A model is established to optimize the personalized travel route recommendation problem, and an improved shuffled frog leaping algorithm is designed based on the characteristics of the model.By adjusting the controllable accuracy, incorporating new selection criteria and handling abnormal solutions in time, the population diversity is increased and the risk of missing the optimal solution is reduced, which enhance the local search ability and searching accuracy of the algorithm.The personalized travel route recommendation for three-day tour in Nanjing is taken as an instance to verify the proposed method.Relevant data are collected, including admission fees, opening hours, and accommodation expenses for well-known tourist attractions in Nanjing.The results show that compared with basic shuffled frog leaping algorithm, the proposed method can recommend touring routes with higher accuracy and better meet the users' individual interests.

    参考文献
    [1] 杨云鹏, 袁光辉, 金阳, 等.全国5A级景区旅游路线规划问题研究[J].数学的实践与认识, 2016, 46(15):74-80 YANG Yunpeng, YUAN Guanghui, JIN Yang, et al.Research on the national 5A level scenic tourist route planning[J].Mathematics in Practice and Theory, 2016, 46(15):74-80
    [2] Zhu D X, Wu Y J, Wang X D.A dynamic programming algorithm for a generalized LCS problem with multiple subsequence inclusion constraints[J].Internet of Vehicles-Safe and Intelligent Mobility, 2015:439-446
    [3] Wu C C, Bai D Y, Azzouz A, et al.A branch-and-bound algorithm and four metaheuristics for minimizing total completion time for a two-stage assembly flow-shop scheduling problem with learning consideration[J].Engineering Optimization, 2020, 52(6):1009-1036
    [4] Luo Q, Wang H B, Zheng Y, et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Neural Computing and Applications, 2020, 32(6):1555-1566
    [5] 杨萍.区域旅游者行为模式及影响研究[J].经济问题探索, 2003(6):114-117 YANG Ping.Research on the pattern and influence of district traveler's behavior[J].Inquiry into Economic Problems, 2003(6):114-117
    [6] 明勇, 王华军.基于改进混合蛙跳和GIS的城市垃圾车回收路径优化设计[J].计算机测量与控制, 2014, 22(12):4054-4057 MING Yong, WANG Huajun.Design for optimization of city rubbish collection route planning based on improved compound frog hop and GIS[J].Computer Measurement & Control, 2014, 22(12):4054-4057
    [7] 黄于欣, 蒋洪杰.基于改进蚁群算法的旅游景区路径规划[J].河南科学, 2018, 36(6):823-829 HUANG Yuxin, JIANG Hongjie.An improved ant colony algorithm for path planning in scenic zones[J].Henan Science, 2018, 36(6):823-829
    [8] 杨晓敏.基于蚁群算法的黄河金三角旅游路线规划研究[J].计算机时代, 2018(12):61-63 YANG Xiaomin.Research on tourist route planning of the Yellow River golden triangle based on ant colony algorithm[J].Computer Era, 2018(12):61-63
    [9] 陈春朝, 李恒宇, 罗均.基于混合蛙跳算法优化人工势场的路径规划方法研究[J].河南理工大学学报(自然科学版), 2018, 37(5):105-110 CHEN Chunchao, LI Hengyu, LUO Jun.Study on path planning algorithm based on artificial potential field optimized by shuffled frog leaping algorithm[J].Journal of Henan Polytechnic University (Natural Science), 2018, 37(5):105-110
    [10] Shiripour S, Mahdavi-Amiri N, Mahdavi I.Planning a capacitated road network with flexible travel times:a genetic algorithm[J].Journal of Mathematical Modelling and Algorithms in Operations Research, 2015, 14(4):425-451
    [11] Reyes-Rubiano L, Calvet L, Juan A A, et al.A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems[J].Journal of Heuristics, 2020, 26(3):401-422
    [12] Sánchez-Oro J, López-Sánchez A D, Colmenar J M.A general variable neighborhood search for solving the multi-objective open vehicle routing problem[J].Journal of Heuristics, 2020, 26(3):423-452
    [13] 姜慧楠, 张向锋.一种人工鱼群-蛙跳混合优化算法[J].上海电机学院学报, 2019, 22(6):330-336, 344 JIANG Huinan, ZHANG Xiangfeng.A hybrid artificial fish swarm and shuffled frog leaping algorithm[J].Journal of Shanghai Dianji University, 2019, 22(6):330-336, 344
    [14] 万慧云, 蒋艳.基于蚁群算法的5A景点旅游路线规划问题研究[J].软件导刊, 2019, 18(4):141-144 WAN Huiyun, JIANG Yan.Research on China's 5A scenic spot tourism route planning based on ant colony algorithm[J].Software Guide, 2019, 18(4):141-144
    [15] 杨静.旅游路线的优化设计研究:以中国201个5A级景区为例[J].新经济, 2016(11):24 YANG Jing.Study on the optimal design of tourist routes:a case study of 2015A scenic spots in China[J].New Economy, 2016(11):24
    相似文献
    引证文献
引用本文

申晓宁,王森林,吴俊潮,仇友辉,张磊,李常峰,王玉芳.基于改进混合蛙跳算法的个性化旅游路线推荐[J].南京信息工程大学学报(自然科学版),2021,13(4):467-476
SHEN Xiaoning, WANG Senlin, WU Junchao, QIU Youhui, ZHANG Lei, LI Changfeng, WANG Yufang. Personalized travel route recommendation based on an improved shuffled frog leaping algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(4):467-476

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-28
  • 在线发布日期: 2021-10-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司