基于去噪和分形的加密货币投资组合模型优化研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F830;O224

基金项目:

国家自然科学基金(71371100,71701104)


Model optimization of cryptocurrency portfolio based on EMD denoising and DCCA methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高投资效益,本文针对传统投资组合模型的缺陷,结合经验模态分解(EMD)去噪法和多重分形消除趋势交叉相关分析法(MF-DCCA),提出经验模态分解去噪下的多重分形投资组合模型(简称EMD-Mean-MF-DCCA).将新模型应用于极具投机性的加密货币投资组合,结合滚动窗口技术进行样本外检验和分析,实证结果显示:无论加密货币价格处于上升还是下降趋势,EMD-Mean-MF-DCCA相对于其他传统投资组合模型及未去噪的分形投资组合模型,均在盈利能力和夏普比率方面具有明显优化效果,且当加密货币价格大幅下跌时,基于新模型的组合投资策略也具有较好的抵抗风险能力.

    Abstract:

    The Empirical Mode Decomposition (EMD) denoising and Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) have been combined to address the shortcomings of traditional portfolio models,thus a multiple fractal portfolio model under EMD denoising and MF-DCCA is proposed in this paper.The new model,abbreviated as EMD-Mean-MF-DCCA,is applied to a highly speculative cryptocurrency portfolio,which is then verified by out-of-sample test and analysis with rolling window technique.The results show that whether the cryptocurrency price is on upward or downward trend,the proposed EMD-Mean-MF-DCCA is significantly optimized in terms of profitability and Sharpe ratio compared with traditional portfolio models and non-denoised fractal portfolio models.Moreover,the portfolio investment scheme under the new model has better risk resistance capability when the price of cryptocurrency falls sharply.

    参考文献
    相似文献
    引证文献
引用本文

曹广喜,张星宇.基于去噪和分形的加密货币投资组合模型优化研究[J].南京信息工程大学学报(自然科学版),2021,13(3):369-376
CAO Guangxi, ZHANG Xingyu. Model optimization of cryptocurrency portfolio based on EMD denoising and DCCA methods[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(3):369-376

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-25
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司