基于CyGNSS数据的土壤水分与植被光学厚度反演研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S152.7;S127

基金项目:

国家自然科学基金(42001362,42001375)


Retrievals of soil moisture and vegetation optical depth using CyGNSS data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文提出了一种仅基于CyGNSS数据,能够同时反演土壤水分与植被光学厚度的方案,该方案使用了神经网络与暴力穷举算法.首先考察了2018年以及2020年的数据,并对结果进行了验证.通过分析发现反演结果与参考数据展现了良好的一致性.土壤水分的反演结果与2018年和2020年的测试数据比较,其相关系数分别高达0.86和0.84,均方根误差分别为0.064和0.071 cm3/cm3;对于植被光学厚度,2018年与2020年的相关系数均为0.98,均方根误差分别为0.079和0.084.研究结果表明,CyGNSS可作为一种新型且独立的泛热带土壤水分与植被光学厚度反演手段.

    Abstract:

    In this paper,a new scheme is proposed for simultaneously retrieving Soil Moisture (SM) and Vegetation Optical Depth (VOD),solely from the Cyclone Global Navigation Satellite System (CyGNSS) data.This work is accomplished by employing two pre-trained neural networks (NNs),including one for computing SM from the CyGNSS data and Soil Moisture Active Passive (SMAP) VOD as well as the other for calculating VOD from the CyGNSS data and SMAP SM product,through a brute-force searching.By adopting the proposed method,the posterior SM/VOD can be estimated merely using the CyGNSS data,free from other auxiliary data.The attained results are validated against SMAP products for two separate periods:the whole year of 2018 and a recent course in 2020.Satisfactory agreements between the retrieved and referred SM/VOD are achieved,with correlation coefficients (r) of 0.86 and 0.84,along with root-mean-square errors (RMSEs) of 0.064 and 0.071 cm3/cm3 for SM in the years of 2018 and 2020,respectively;and for the verification of VOD,r=0.98 and RMSE=0.079 are acquired for 2018,and r=0.98 and RMSE=0.084 for 2020,respectively.The good consistency obtained in this work illustrates the capability of CyGNSS as a new independent source for estimating pan-tropical SM and VOD.

    参考文献
    相似文献
    引证文献
引用本文

严清赟,金双根,黄为民,贾燕,魏思远.基于CyGNSS数据的土壤水分与植被光学厚度反演研究[J].南京信息工程大学学报(自然科学版),2021,13(2):194-203
YAN Qingyun, JIN Shuanggen, HUANG Weimin, JIA Yan, WEI Siyuan. Retrievals of soil moisture and vegetation optical depth using CyGNSS data[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(2):194-203

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-21
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司