动态环境下PPP的GNSS大气水汽反演
作者:
中图分类号:

P228.4

基金项目:

国家自然科学基金(41704024);宁波市公益类项目(20181JCGY020386);南京信息工程大学人才项目(2019r034)


Precipitable water vapor retrieving using precise point positioning in dynamic scenario
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    利用静态PPP(精密单点定位)处理稳定的GNSS地面站可以高精度反演大气中的水汽含量.对于运动的载体,静态PPP无法正确地估计待估参数.利用动态PPP数据处理方法,在解算载体动态位置的同时,可以估计动态载体GNSS的天顶总延迟,并在此基础上计算水汽含量.分别利用PPP动态和静态模型解算3.5 h的稳定可靠GNSS参考站数据,结果表明,动态PPP与静态PPP利用稳定CORS站解算大气可降水量(PWV)时,最大差别为6.6 mm,且水汽的变化趋势基本一致.在快速运动平台下,旋转平台解算的PWV与相同环境下的CORS站解算的水汽结果在量级上一致,但并不能像CORS站结果一样可以反映出水汽的变化趋势.针对地震等GNSS台站失稳问题,分别利用动态、静态PPP进行水汽的提取,结果表明,地震的短期形变对PPP水汽的提取无明显影响.建议使用静态PPP对失稳GNSS台站进行水汽提取.

    Abstract:

    Precise point positioning (PPP) has been well established for retrieving the precipitable water vapor (PWV) in the static model.Yet it is not always suitable for static PPP PWV retrieving,for an instance,the GNSS antenna keeps moving.Position and zenith total delay (ZTD) are coinstantaneously estimated in dynamic PPP model,which is an option for the PWV retrieving in dynamic scenario.GNSS data over 3.5 hours have been gathered from the Continuously Operating Reference Stations (CORS).Both static and dynamic PPPs have been applied for the CORS data processing.The result reveals that the maximum difference is 6.6 mm,and dynamic PPP PWV graduate movement agrees in magnitude with that from static PPP PWV.A rotation arm has been designed for GNSS receiver gathering data in dynamic scenario.PPP in dynamic model can retrieve the rotation arm PWV,which makes sense to the one from CORS PWV,but lose the capacity of detecting the PWV changes.GNSS station can have displacement in a short term in the earthquake event.Both static PPP and dynamic PPP have been assessed for this scenario.The result reveals that displacement due to the earthquake does not make an evident effect on the PWV retrieving both in static PPP and dynamic PPP.The static PPP is still recommended for the PWV retrieving over the earthquake period.

    参考文献
    [1] Shi J B, Gao Y.A troposphere constraint method to improve PPP ambiguity-resolved height solution[J].Journal of Navigation, 2014, 67(2):249-262
    [2] Hadas T, Kaplon J, Bosy J, et al.Near-real-time regional troposphere models for the GNSS precise point positioning technique[J].Measurement Science and Technology, 2013, 24(5):055003
    [3] Alves D B M, Sapucci L F, Marques H A, et al.Using a regional numerical weather prediction model for GNSS positioning over Brazil[J].GPS Solutions, 2016, 20(4):677-685
    [4] Tang X, Hancock C M, Xiang Z Y, et al.Precipitable water vapour retrieval from GPS precise point positioning and NCEP CFSv2 dataset during typhoon events[J].Sensors (Basel), 2018, 18(11):3831
    [5] Song D S, Grejner-Brzezinska D A.Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event[J].Earth Planets and Space, 2009, 61(10):1117-1125
    [6] Yao Y B, Shan L L, Zhao Q Z.Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J].Scientific Reports, 2017, 7(1):12465
    [7] Zhao Q Z, Yao Y B, Yao W Q.GPS-based PWV for precipitation forecasting and its application to a typhoon event[J].J Atmos Sol-Terr Phy, 2018, 167:124-133
    [8] Sohn D H, Choi B K, Park Y, et al.Precipitable water vapor retrieval from shipborne GNSS observations on the Korean research vessel ISABU[J].Sensors (Basel), 2020, 20(15):4261
    引证文献
引用本文

唐旭,吴昊,张迪.动态环境下PPP的GNSS大气水汽反演[J].南京信息工程大学学报(自然科学版),2021,13(2):181-186
TANG Xu, WU Hao, ZHANG Di. Precipitable water vapor retrieving using precise point positioning in dynamic scenario[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(2):181-186

复制
分享
文章指标
  • 点击次数:620
  • 下载次数: 1913
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-01-12
  • 在线发布日期: 2021-05-21

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司