基于数据驱动高阶学习律的轮式移动机器人轨迹跟踪控制
作者:
中图分类号:

TP273

基金项目:

国家自然科学基金(61873139);山东省泰山学者青年专家人才工程;山东省自然科学基金(ZR2019MF036)


Data-driven high-order learning control for path tracking of wheeled mobile robots
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    轮式机器人执行巡逻、播种和工业生产等任务是一个强非线性的间歇过程.针对重复运行的轮式机器人轨迹跟踪问题,本文提出了一种基于数据驱动的高阶迭代学习控制算法.首先,对轮式移动机器人的模型进行推导设计,并对推导得到的状态空间形式的离散时间模型利用基于状态转移的迭代动态线性化方法,将轮式机器人系统转化为线性输入输出数据模型;其次,设计高阶迭代优化目标函数得到控制律,并利用参数更新律估计线性输入输出数据模型中的未知参数.控制器的设计和分析只使用系统的输入输出数据,不包含任何显式的模型信息.通过采用高阶学习控制方法,在控制律中利用更多之前迭代的控制输入信息,提高了控制性能.最后,仿真结果验证了该方法在轮式机器人轨迹跟踪控制中的有效性.

    Abstract:

    The task of patrolling,seed sowing and industrial production of wheeled robots is a strongly nonlinear intermittent process.In this paper,a data-driven high-order iterative learning control algorithm is proposed for the path tracking of wheeled mobile robots in repeated running scenes.First,the model of wheeled mobile robot is derived and designed,and the discrete-time model in state space is transformed into linear input/output data model by using iterative dynamic linearization method based on state transition.Second,a high-order iterative optimization objective function is designed to obtain the control law,and the parameter update law is used to estimate the unknown parameters in the linear data model.By using high order learning control method,more control input information of previous iteration is used in the control law to improve the control performance.Finally,the simulation results verify the effectiveness of this method in the trajectory tracking control of wheeled robot.

    参考文献
    [1] Chan R P M,Stol K A,Halkyard C R.Review of modelling and control of two-wheeled robots[J].Annual Reviews in Control,2013,37(1):89-103
    [2] Do K D.Output-feedback formation tracking control of unicycle-type mobile robots with limited sensing ranges[J].Robotics and Autonomous Systems,2009,57(1):34-47
    [3] Pan J,Zhang L J,Manocha D.Collision-free and smooth trajectory computation in cluttered environments[J].The International Journal of Robotics Research,2012,31(10):1155-1175
    [4] Kim Y,Kim B K.Time-optimal trajectory planning based on dynamics for differential-wheeled mobile robots with a geometric corridor[J].IEEE Transactions on Industrial Electronics,2017,64(7):5502-5512
    [5] Gunnarsson S,Norrlöf M.On the disturbance properties of high order iterative learning control algorithms[J].Automatica,2006,42(11):2031-2034
    [6] Wu W,Chen J,Mao L.Two-wheeled mobile robot tracking based on iterative learning control[J].Materials Science and Information Technology,2012,433:5866-5870
    [7] Ye J.Tracking control of a non-holonomic wheeled mobile robot using improved compound cosine function neural networks[J].International Journal of Control,2015,88(2):364-373
    [8] Gao Y,Chong K T.Min-max model predictive controller for trajectory tracking of a wheeled mobile robot with slipping effects[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2011,E94-A(2):680-687
    [9] Cui M Y,Liu W,Liu H Z,et al.Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties[J].Nonlinear Dynamics,2016,83(1/2):667-683
    [10] Xiao H Z,Li Z J,Yang C G,et al.Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization[J].IEEE Transactions on Industrial Electronics,2017,64(1):505-516
    [11] Dekker L G,Marshall J A,Larsson J.Experiments in feedback linearized iterative learning-based path following for center-articulated industrial vehicles[J].Journal of Field Robotics,2019,36(5):955-972
    [12] Bu X H,Hou Z S,Chi R H.Model free adaptive iterative learning control for farm vehicle path tracking[J].IFAC Proceedings Volumes,2013,46(20):153-158
    [13] Tan L N.Distributed optimal integrated tracking control for separate kinematic and dynamic uncertain non-holonomic mobile mechanical multi-agent systems[J].IET Control Theory & Applications,2017,11(18):3249-3260
    [14] Yu C,Chen X.Trajectory tracking of wheeled mobile robot by adopting iterative learning control with predictive,current,and past learning items[J].Robotica,2015,33(7):1393-1414
    [15] Maupong T M,Rapisarda P.Data-driven control:a behavioral approach[J].Systems & Control Letters,2017,101:37-43
    [16] Tanaskovic M,Fagiano L,Novara C,et al.Data-driven control of nonlinear systems:an on-line direct approach[J].Automatica,2017,75:1-10
    [17] Hou Z S,Chi R H,Gao H J.An overview of dynamic-linearization-based data-driven control and applications[J].IEEE Transactions on Industrial Electronics,2017,64(5):4076-4090
    [18] Wang D,Liu D R,Zhang Q C,et al.Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2016,46(11):1544-1555
    [19] Chi R H,Hou Z S,Jin S T,et al.Data-driven terminal iterative learning control with high-order learning law for a class of non-linear discrete-time multiple-input-multiple output systems[J].IET Control Theory & Applications,2015,9(7):1075-1082
    [20] Jin X.Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints[J].Automatica,2018,94:63-71
    [21] 池荣虎,侯忠生,于镭,等.高阶无模型自适应迭代学习控制[J].控制与决策,2008,23(7):795-798 CHI Ronghu,HOU Zhongsheng,YU Lei,et al.Higher-order model-free adaptive iterative learning control[J].Control and Decision,2008,23(7):795-798
    [22] Chi R H,Liu Y,Hou Z S,et al.High-order data-driven optimal TILC approach for fed-batch processes[J].The Canadian Journal of Chemical Engineering,2015,93(8):1455-1461
    [23] Chi R H,Huang B,Hou Z S,et al.Data-driven high-order terminal iterative learning control with a faster convergence speed[J].International Journal of Robust and Nonlinear Control,2018,28(1):103-119
    相似文献
    引证文献
引用本文

李佳伟,林娜,池荣虎.基于数据驱动高阶学习律的轮式移动机器人轨迹跟踪控制[J].南京信息工程大学学报(自然科学版),2021,13(1):66-72
LI Jiawei, LIN Na, CHI Ronghu. Data-driven high-order learning control for path tracking of wheeled mobile robots[J]. Journal of Nanjing University of Information Science & Technology, 2021,13(1):66-72

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-31
  • 在线发布日期: 2021-03-31

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司