低温弱光对设施番茄苗期营养物质和干物质分配的影响
作者:
中图分类号:

S614.226

基金项目:

国家重点研发计划(2019YFD1002202);国家自然科学基金(41475107);"十二五"国家科技支撑计划(2014BAD10B07)


Effects of low temperature and low light intensity on nutrient and dry matter distribution in greenhouse tomato (Lycopersicon esculentum Mill.) seedlings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本试验以PAR (光合有效辐射)800 μmol·m-2·s-1,温度25℃为对照(CK),设置6个处理[L1T1(PAR 200 μmol·m-2·s-1,4℃)、L1T2(PAR 200 μmol·m-2·s-1,6℃)、L1T3(PAR 200 μmol·m-2·s-1,8℃)、L2T1(PAR 400 μmol·m-2·s-1,4℃)、L2T2(PAR 400 μmol·m-2·s-1,6℃)和L2T3(PAR 400 μmol·m-2·s-1,8℃)],分别处理6、12、24、48和72 h,以研究低温弱光双重胁迫对番茄苗期干物质分配以及不同器官的可溶性糖、可溶性蛋白和游离氨基酸含量的影响.结果表明:低温弱光双重胁迫使地下部分干物质分配比例减小,而对地上部分干物质分配比例无显著影响,地下部分的干物质分配比例随时间的变化与地上部分相反;低温弱光胁迫显著降低了番茄茎和叶片的可溶性糖、可溶性蛋白和游离氨基酸的含量;根的可溶性糖含量随胁迫时间的变化趋势与地上部分不一致,但根、茎、叶片的可溶性糖含量均以L2T3处理72 h含量最高,分别为94.88、77.09和41.62 mg·g-1;根的可溶性蛋白含量随胁迫时间的变化趋势与地上部分不一致,茎和叶片的可溶性蛋白含量均以L2T3处理12 h最高,以L1T1处理72 h最低;不同器官的游离氨基酸含量随胁迫时间的变化趋势与可溶性蛋白相反;弱光对番茄干物质和营养物质含量的影响小于低温.研究证实苗期番茄在低温弱光胁迫前期,干物质和营养物质先向地上部分分配,胁迫24 h后则更多地向根系积累.

    Abstract:

    In this study,we examined the influence of low temperature and low light intensity stress on the soluble sugar,soluble protein,and free amino acid content in different organs and on dry matter distribution in greenhouse tomato seedlings.We used Photosynthetically Active Radiation (PAR) at 800 μmol·m-2·s-1 and temperature of 25℃ as control(CK),and set up an experiment involving six treatments[L1T1 (PAR 200 μmol·m-2·s-1,4℃),L1T2 (PAR 200 μmol·m-2·s-1,6℃),L1T3 (PAR 200 μmol·m-2·s-1,8℃),L2T1 (PAR 400 μmol·m-2·s-1,4℃),L2T2 (PAR 400 μmol·m-2·s-1,6℃),and L2T3 (PAR 400 μmol·m-2·s-1,8℃)] that were monitored for 6,12,24,48,and 72 h,respectively.The results showed that the dry matter distribution ratio in the underground part of the plant was lower than that in the ground-level parts and opposite to that in the aboveground part.Low temperature and low light intensity stress significantly reduced the soluble sugar,soluble protein,and free amino acid content of the stems and leaves.The soluble sugar content in the roots was not consistent with the aboveground parts but was highest in the roots,stems,and leaves (94.88 mg·g-1,77.09 mg·g-1 and 41.62 mg·g-1,respectively) after 72 h in the L2T3 treatment.The soluble protein content in the roots was not consistent with the aboveground part but was highest in both the stems and leaves after 12 h in the L2T3 treatment and lowest after 72 h in the L1T1 treatment.The free amino acid content in different organs showed an effect opposite to that of the soluble protein content when the stress exposure time was prolonged.Low light had less of an effect on dry matter and nutrient content than low temperatures did.The results showed that dry matter and nutrients were distributed to the ground-level part of the plant during the early stages of exposure to stress,and then to the root system after 24 h of stress exposure.The results provide a theoretical basis for improved loss prevention due to low temperature or low light stress in crops grown in facilities such as greenhouses.

    参考文献
    [1] Nuruddin M M,Madramootoo C A,Dodds G T.Effects of water stress at different growth stages on greenhouse tomato yield and quality[J].Hort Science,2003,38(7):1389-1393
    [2] Heuvelink E.Tomato growth and yield:quantitative analysis and synthesis[D].Wageningen,The Netherlands:Wageningen Agriculture University,1996
    [3] Callahan H S,Pigliucci M.Shade-induced plasticity and its ecological significance in wild populations of arabidopsis thaliana[J].Ecology,2002,83(7):1965
    [4] Elizondo R,Oyanedel E.Field testing of tomato chilling tolerance under varying light and temperature conditions[J].Chilean Journal of Agricultural Research,2010,70(4):552-558
    [5] Kao W Y,Shih C N,Tsai T T.Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina[J].Tree Physiology,2004,24(7):859-864
    [6] Wei Y Y,Xu F,Shao X F.Changes in soluble sugar metabolism in loquat fruit during different cold storage[J].Journal of Food Science and Technology,2017,54(5):1043-1051
    [7] Kuwagata T,Ishikawa-Sakurai J,Hayashi H,et al.Influence of low air humidity and low root temperature on water uptake,growth and aquaporin expression in rice plants[J].Plant and Cell Physiology,2012,53(8):1418-1431
    [8] Heuvelink E.Effect of fruit load on dry matter partitioning in tomato[J].Scientia Horticulturae,1997,69(1/2):51-59
    [9] Walker M A,McKersie B D,Pauls K P.Effects of chilling on the biochemical and functional properties of thylakoid membranes[J].Plant Physiology,1991,97(2):663-669
    [10] Kawasaki Y,Matsuo S,Kanayama Y,et al.Effect of root-zone heating on root growth and activity,nutrient uptake,and fruit yield of tomato at low air temperatures[J].Journal of the Japanese Society for Horticultural Science,2014,83(4):295-301
    [11] El-Gizawy A M,Gomaa H M,El-Habbasha K M,et al.Effect of different shading levels on tomato plants 1.growth,flowering and chemical composition[J].Acta Horticulturae,1993(323):341-348
    [12] Cockshull K E,Graves C J,Cave C R J.The influence of shading on yield of glasshouse tomatoes[J].Journal of Horticultural Science,1992,67(1):11-24
    [13] 何维明,钟章成.攀援植物绞股蓝幼苗对光照强度的形态和生长反应[J].植物生态学报,2000,24(3):375-378 HE Weiming,ZHONG Zhangcheng.Morphological and growth responses of the climbing plant,gynostemma pentaphyllum seedlings to varying light intensity[J].Acta Phytoecologica Sinica,2000,24(3):375-378
    [14] Steinger T,Roy B A,Stanton M L.Evolution in stressful environments II:adaptive value and costs of plasticity in response to low light in Sinapis arvensis[J].Journal of Evolutionary Biology,2003,16(2):313-323
    [15] Yu D J,Hwang J Y,Chung S W,et al.Changes in cold hardiness and carbohydrate content in peach (Prunus persica) trunk bark and wood tissues during cold acclimation and deacclimation[J].Scientia Horticulturae,2017,219:45-52
    [16] Klopotek Y,Kläring H P.Accumulation and remobilisation of sugar and starch in the leaves of young tomato plants in response to temperature[J].Scientia Horticulturae,2014,180:262-267
    [17] Ou L J,Wei G,Zhang Z Q,et al.Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species[J].Photosynthetica,2015,53(1):85-94
    [18] Yan S P,Zhang Q Y,Tang Z C,et al.Comparative proteomic analysis provides new insights into chilling stress responses in rice[J].Molecular & Cellular Proteomics,2006,5(3):484-496
    [19] Gammulla C G,Pascovici D,Atwell B J,et al.Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress[J].Proteomics,2010,10(16):3001-3019
    [20] Lee D G,Ahsan N,Lee S H,et al.Chilling stress-induced proteomic changes in rice roots[J].Journal of Plant Physiology,2009,166(1):1-11
    [21] Mo Z W,Li W,Pan S G,et al.Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice[J].Rice,2015,8:9
    [22] 颉建明,郁继华,颉敏华,等.低温弱光下辣椒3种渗透调节物质含量变化及其与品种耐性的关系[J].西北植物学报,2009,29(1):105-110 XIE Jianming,YU Jihua,XIE Minhua,et al.Changes of three osmotic regulatory metabolites in leaves of pepper under low temperature and poor light stress and relations between its and varietal tolerance[J].Acta Botanica Boreali-Occidentalia Sinica,2009,29(1):105-110
    [23] Kaplan F,Kopka J,Sung D Y,et al.Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content[J].The Plant Journal,2007,50(6):967-98
    [24] Kovács Z,Simon-Sarkadi L,Szücs A,et al.Differential effects of cold,osmotic stress and abscisic acid on polyamine accumulation in wheat[J].Amino Acids,2010,38(2):623-631
    [25] Liang C G,Jia L,Yan W,et al.Low light during grain filling stage deteriorates rice cooking quality,but not nutritional value[J].Rice Science,2015,22(4):197-206
    [26] 李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000 LI Hesheng.Principles andtechniques of plant physiology and biochemistry experiment[M].Beijing:Higher Education Press,2000
    [27] Munns R.Comparative physiology of salt and water stress[J].Plant,Cell and Environment,2002,25(2):239-250
    [28] Abreu M E,Munné-Bosch S.Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials:a case study in field-grown Salvia officinalis L.plants[J].Environmental and Experimental Botany,2008,64(2):105-112
    [29] Ruelland E,Zachowski A.How plants sense temperature[J].Environmental and Experimental Botany,2010,69(3):225-232
    [30] Walter A,Nagel K A.Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings[J].Plant Signaling & Behavior,2006,1(5):225-226
    [31] 邹雨伽,高冠,杨再强,等.低温寡照对番茄花期植株生长及干物质分配的影响[J].江苏农业科学,2016,44(12):178-184 ZOU Yuqie,GAO Guan,YANG Zaiqiang,et al.Effects of low temperature and low light on plant growth and dry matter distribution in tomato flowering stage[J].Jiangsu Agricultural Sciences,2016,44(12):178-184
    [32] Ma Y Y,Zhang Y L,Lu J,et al.Roles of plant soluble sugars and their response to plant cold stress[J].African Journal of Biotechnology,2009,8(10):2004-2010
    [33] Wisniewski M,Nassuth A,Teulières C,et al.Genomics of cold hardiness in woody plants[J].Critical Reviews in Plant Sciences,2014,33(2/3):92-124
    [34] 赵昶灵,武绍波,李文祥,等.人工低温对滇中砀山酥梨休眠芽和枝的效应[J].西北植物学报,2000,20(4):596-603 ZHAO Changling,WU Shaobo,LI Wenxiang,et al.Effects of the artificial low temperature on the dormant buds and shoots of Dangshan pear in the central part of Yunnan[J].Acta Botanica Boreali-Occidentalia Sinica,2000,20(4):596-603
    [35] Jaganathan G K,HanY Y,Li W J,et al.Physiological mechanisms only tell half story:multiple biological processes are involved in regulating freezing tolerance of imbibed lactuca sativa seeds[J].Scientific Reports,2017,7:44166
    [36] Mohamed H B,Vadel A M,Geuns J M C,et al.Biochemical changes in dormant grapevine shoot tissues in response to chilling:possible role in dormancy release[J].Scientia Horticulturae,2010,124(4):440-447
    [37] 刘波,郑国生,闫志佩,等.低温处理对牡丹春节催花及营养类物质变化的影响[J].西北植物学报,2004,24(9):1635-1639 LIU Bo,ZHENG Guosheng,YAN Zhipei,et al.Effect of different chilling treatments on forcing culture of tree peony in winter and changes of nutrient substance[J].Acta Botanica Boreali-Occidentalia Sinica,2004,24(9):1635-1639
    [38] Correia M J,Osório M L,Osório J,et al.Influence of transient shade periods on the effects of drought on photosynthesis,carbohydrate accumulation and lipid peroxidation in sunflower leaves[J].Environmental and Experimental Botany,2006,58(1/2/3):75-84
    [39] Hu W H,Wu Y,Zeng J Z,et al.Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery[J].Photosynthetica,2010,48(4):537-544
    [40] BruggemannW.Long-term chilling of young tomato plants under low light.VI.Differential chilling sensitivity of ribulose-1,5-bisphosphate Carboxylase/Oxygenase is linked to the oxidation of cysteine residues[J].Plant and Cell Physiology,1995,36(4):733-736
    [41] 谢志玉,张文辉,刘新成,等.干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J].西北植物学报,2010,30(5):948-954 XIE Zhiyu,ZHANG Wenhui,LIU Xincheng,et al.Growth and physiological characteristics of xanthoceras sorbifolia seedlings under soil drought stress[J].Acta Botanica Boreali-Occidentalia Sinica,2010,30(5):948-954
    [42] 唐云明.桑冬芽休眠解除中蛋白质和核酸的动态变化研究[J].西南农业大学学报,1997,19(1):75-77 TANG Yunming.Kinetic changes of protein and nucleic acids during dormancy release of mulberry winter buds[J].Journal of Southwest Agricultural University,1997,19(1):75-77
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨再强,袁昌洪,丁宇晖,侯梦媛,张曼义.低温弱光对设施番茄苗期营养物质和干物质分配的影响[J].南京信息工程大学学报(自然科学版),2020,12(1):108-117
YANG Zaiqiang, YUAN Changhong, DING Yuhui, HOU Mengyuan, ZHANG Manyi. Effects of low temperature and low light intensity on nutrient and dry matter distribution in greenhouse tomato (Lycopersicon esculentum Mill.) seedlings[J]. Journal of Nanjing University of Information Science & Technology, 2020,12(1):108-117

复制
分享
文章指标
  • 点击次数:429
  • 下载次数: 1795
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-04-08
  • 在线发布日期: 2020-03-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司