小样本目标检测的研究现状
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFC0807500)


A survey of few-shot object detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着深度学习技术的进步与推广,目标检测领域得到快速发展.但目前基于深度学习的方法大多对大规模标注数据有着极高的需求,而现实场景中大量标注数据往往不可能.因此,基于少量标注样本的目标检测领域逐渐得到大家关注.本文系统地总结与分析了目前有关小样本目标检测的方法,指出了目前方法的缺陷,并提出了一些可能的发展方向.

    Abstract:

    Research on object detection has developed rapidly in recent years with the progress of deep learning.However,the deep learning based object detection systems rely heavily on large scale labeled training data,which are rarely available in our realistic scene,so few-shot object detection get researchers' great concern.In this paper,we present a survey of few-shot object detection,and introduce the mainstream approaches and their characteristics,merits as well as limits.Finally,we provide the possible direction for further few-shot object detection research.

    参考文献
    相似文献
    引证文献
引用本文

潘兴甲,张旭龙,董未名,姚寒星,徐常胜.小样本目标检测的研究现状[J].南京信息工程大学学报(自然科学版),2019,11(6):698-705
PAN Xingjia, ZHANG Xulong, DONG Weiming, YAO Hanxing, XU Changsheng. A survey of few-shot object detection[J]. Journal of Nanjing University of Information Science & Technology,2019,11(6):698-705

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-19
  • 出版日期:

地址:江苏南京,宁六路219号,南京信息工程大学    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2023 版权所有  技术支持:北京勤云科技发展有限公司