基于XGBoost算法的电网二次设备缺陷分类研究
作者:
基金项目:

国家自然科学基金(61673161);国网新疆电力有限公司电力科学研究院科技项目(SGXJDK00DJJS1900094)


Defect classification of secondary equipment in power grid based on XGBoost
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    电网二次设备缺陷严重程度的精确判断可为设备的运行和维护提供重要依据.针对电网二次设备缺陷数据特征量多、人为判断难度大、易出错等问题,提出基于XGBoost(eXtreme Gradient Boosting)的二次设备缺陷分类方法,提高二次设备缺陷分类的准确率.首先,对二次设备历史缺陷数据进行去异常值、编码等一系列预处理工作,并筛选出与设备缺陷相关性高的特征建立特征指标集;然后,利用历史缺陷数据对XGBoost模型进行训练和参数寻优;最后,用训练好的分类模型实现二次设备缺陷的准确分类.本文采用某电厂二次设备缺陷数据对所提算法进行算例分析,并与传统分类器(决策树、逻辑回归等)进行比较,结果表明XGBoost可以实现对二次设备缺陷程度的精确判断,进而可以很好地辅助检修人员进行设备的维护与管理.

    Abstract:

    Accurate determination of the severity of secondary equipment defects in power grid can provide an important basis for the operation and maintenance of equipment.Therefore,in this paper,to address problems such as large quantity of defective data features,and the great difficulty of using error-prone human judgment as an evaluation parameter,a defect classification method based on XGBoost (eXtreme Gradient Boosting) is proposed to improve the accuracy of defect classification of secondary equipment.First,a series of pre-processing work,such as removing outliers and coding,is performed on the secondary equipment historical defect data,and the characteristics highly correlated with equipment defects are extracted to establish the feature index set.Subsequently,the XGBoost model is trained and optimized using historical defect data.Finally,the trained classification model is used to realize the accurate classification of secondary equipment defects.Based on the secondary equipment defective data of a power plant,simulation results are presented to illustrate the effectiveness of the proposed algorithm and are compared with those of traditional classifiers (decision tree,logistic regression,etc.).Simulation results show that XGBoost can accurately determine the defect degree of secondary equipment,to assist the maintenance and management of equipment.

    参考文献
    [1] 郭创新,陆海波,俞斌,等.电力二次系统安全风险评估研究综述[J].电网技术,2013,37(1):112-118 GUO Chuangxin,LU Haibo,YU Bin,et al.A survey of research on security risk assessment of secondary system[J].Power System Technology,2013,37(1):112-118
    [2] 曹楠,王芝茗,李刚,等.智能变电站二次系统动态重构初探[J].电力系统自动化,2014,38(5):113-121 CAO Nan,WANG Zhiming,LI Gang,et al.Study on dynamic reconfiguration in secondary system of intelligent substation[J].Automation of Electric Power Systems,2014,38(5):113-121
    [3] 袁浩,屈刚,庄卫金,等.电网二次设备状态监测内容探讨[J].电力系统自动化,2014,38(12):100-106 YUAN Hao,QU Gang,ZHUANG Weijin,et al.Discussion on condition monitoring contents of secondary equipment in power grid[J].Automation of Electric Power Systems,2014,38(12):100-106
    [4] 史逸民,史达伟,郝玲,等.基于数据挖掘CART算法的区域夏季降水日数分类与预测模型研究[J].南京信息工程大学学报(自然科学版),2018,10(6):760-765 SHI Yimin,SHI Dawei,HAO Ling,et al.Model prediction of regional summer precipitation days based on CART algorithm[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2018,10(6):760-765
    [5] 黄志刚,刘虹,刘娟,等.基于C5.0算法的胃癌生存预测模型研究[J].南京信息工程大学学报(自然科学版),2017,9(4):406-410 HUANG Zhigang,LIU Hong,LIU Juan,et al.Gastric cancer prediction model based on C5.0 classification algorithm[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2017,9(4):406-410
    [6] 徐沛勣,姚天祥.基于灰色定权聚类的江苏省工业节能减排评价研究[J].南京信息工程大学学报(自然科学版),2014,6(4):374-379 XU Peiji,YAO Tianxiang.Research of industrial energy conservation and emission reduction in Jiangsu province based on grey fixed weight cluster[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2014,6(4):374-379
    [7] 陈龙龙,王波,袁玲.一种电力变压器神经网络故障诊断方法[J].南京信息工程大学学报(自然科学版),2018,10(2):199-202 CHEN Longlong,WANG Bo,YUAN Ling.A neural network-based method for fault diagnosis of power transformer[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2018,10(2):199-202
    [8] 张延旭,胡春潮,黄曙,等.基于Apriori算法的二次设备缺陷数据挖掘与分析方法[J].电力系统自动化,2017,41(19):147-151,163 ZHANG Yanxu,HU Chunchao,HUANG Shu,et al.Apriori algorithm based data mining and analysis method for secondary device defects[J].Automation of Electric Power Systems,2017,41(19):147-151,163
    [9] 孙金莉,李煜磊,冯凝,等.智能变电站二次设备缺陷分析专家系统的研究与应用[J].电网与清洁能源,2016,32(10):94-98 SUN Jinli,LI Yulei,FENG Ning,et al.Research and application of the expert system for defect analysis of the secondary equipment in smart substations[J].Power System and Clean Energy,2016,32(10):94-98
    [10] 王师霜.二次设备状态评价数据挖掘技术的研究与应用[D].保定:华北电力大学,2013 WANG Shishuang.Research and application on data mining technology in secondary device status evaluation[D].Baoding:North China Electric Power University,2013
    [11] 李勋,龚庆武,杨群瑛,等.基于数据挖掘技术的保护设备故障信息管理与分析系统[J].电力自动化设备,2011,31(9):88-91 LI Xun,GONG Qingwu,YANG Qunying,et al.Fault information management and analysis system based on data mining technology for relay protection devices[J].Electric Power Automation Equipment,2011,31(9):88-91
    [12] Chen T,He T.Higgs boson discovery with boosted trees[J].JMLR:Workshop and Conference Proceedings,2015,42:69-80
    [13] 叶倩怡,饶泓,姬名书,等.基于Xgboost的商业销售预测[J].南昌大学学报(理科版),2017,41(3):275-281 YE Qianyi,RAO Hong,JI Mingshu,et al.Sales prediction of stores based on xgboost algorithm[J].Journal of Nanchang University(Natural Science),2017,41(3):275-281
    [14] 李伟,王丽霞,李广野,等.基于极限梯度提升树的输电线路缺陷风险预报[J].控制工程,2018,25(7):1172-1178 LI Wei,WANG Lixia,LI Guangye,et al.Prediction of transmission line defects risk based on extreme gradient boosting tree[J].Control Engineering of China,2018,25(7):1172-1178
    相似文献
    引证文献
引用本文

陈凯,南东亮,孙永辉,夏响.基于XGBoost算法的电网二次设备缺陷分类研究[J].南京信息工程大学学报(自然科学版),2019,11(4):483-489
CHEN Kai, NAN Dongliang, SUN Yonghui, XIA Xiang. Defect classification of secondary equipment in power grid based on XGBoost[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(4):483-489

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-19
  • 在线发布日期: 2019-09-03

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司