参数不匹配下含有泄露时滞与多个传输时滞的分数阶忆阻器神经网络的拟同步
作者:
基金项目:

国家自然科学基金(61573291,61573096)


Quasi-synchronization of fractional-order memristor-based neural networks with leakage delay under parameter mismatches
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    本文主要讨论了一类在参数不匹配之下带有多个传输时滞与泄露时滞的分数阶忆阻器神经网络的拟同步问题.首先,给出了时滞线性反馈控制器;然后,根据分数阶微分包含、集合值映射理论和分数阶微分不等式理论等,得出了主从系统达到拟同步所满足的条件以及所对应的误差边界;最后,给出了一些数值模拟验证所得结论的有效性.

    Abstract:

    In this paper,we mainly discuss the quasi-synchronization problem of a class of fractional-order memristor-based neural networks with multiple transmission delays and leakage delay under parameter mismatches.Firstly,the delay linear feedback controller is given,then according to the theory of fractional-order differential inclusion,set-valued maps,fractional-order differential inequality theory and so on,the conditions for the master-slave systems to reach the quasi-synchronization and the corresponding error bounds are obtained.Finally,some corresponding numerical simulations are given to demonstrate the effectiveness of the obtained results.

    参考文献
    [1] Podlubny I.Fractional differential equations[M].New York:Academic Press,1999
    [2] Wu A L,Liu L,Huang T W,et al.Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments[J].Neural Networks,2017,85:118-127
    [3] Yang X J,Li C D,Huang T W,et al.Global Mittag-Leffler synchronization of fractional-order neural networks via impulsive control[J].Neural Processing Letters,2018,48(1):459-479
    [4] Thuan M V,Huong D C,Hong D T.New results on robust finite-time passivity for fractional-order neural networks with uncertainties[J].Neural Processing Letters,2018,5:1-14
    [5] Yang X J,Li C D,Song Q K,et al.Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons[J].Neural Networks,2018,105:88-103
    [6] Fan Y J,Huang X,Wang Z,et al.Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function[J].Nonlinear Dynamics,2018,93(2):611-627
    [7] Chua L.Memristor-the missing circuit element[J].IEEE Transactions on Circuit Theory,1971,18(5):507-519
    [8] Chen J Y,Li C D,Yang X J.Global Mittag-Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control[J].Neurocomputing,2018,313:324-332
    [9] Zhang W W,Cao J D,Wu R C,et al.Projective synchronization of fractional-order delayed neural networks based on the comparison principle[J].Advances in Difference Equations,2018,2018:73
    [10] Mathiyalagan K,Park J H,Sakthivel R.Exponential synchronization for fractional-order chaotic systems with mixed uncertainties[J].Complexity,2015,21(1):114-125
    [11] Huang X,Fan Y J,Jia J,et al.Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches[J].IET Control Theory & Applications,2017,11(14):2317-2327
    [12] Tirandaz H,Karami-Mollaee A.Combination synchronization of multiple chaotic systems with uncertain parameters using adaptive hybrid modified projective control method[J].Acta Physica Polonica B,2018,49(1):59
    [13] Zhang S,Yu Y,Wang H.Mittag-Leffler stability of fractional-order Hopfield neural networks[J].Nonlinear Analysis Hybrid Systems,2015,16:104-121
    [14] Wu A L,Zeng Z G.Global Mittag-Leffler stabilization of fractional-order memristive neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(1):206-217
    [15] Aubin J P,Cellina A.Differential inclusions:set-valued maps and viability theory[M].New York:Springer,1984
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张建梅,包海波,曹进德.参数不匹配下含有泄露时滞与多个传输时滞的分数阶忆阻器神经网络的拟同步[J].南京信息工程大学学报(自然科学版),2019,11(4):428-434
ZHANG Jianmei, BAO Haibo, CAO Jinde. Quasi-synchronization of fractional-order memristor-based neural networks with leakage delay under parameter mismatches[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(4):428-434

复制
分享
文章指标
  • 点击次数:469
  • 下载次数: 1944
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-06-13
  • 在线发布日期: 2019-09-03

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司