基于非线性分离的可倾转四旋翼LQR飞行控制研究
作者:
基金项目:

国家自然科学基金(61473144);中国南方电网有限责任公司科技项目(066600KK52170074)


LQR control of quadrotor with tiltable-rotors based on nonlinear separation strategy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文研究了一种能够独立控制位置和姿态的可倾转四旋翼飞行器,在建立了系统动力学模型的基础上,针对可倾转四旋翼飞行器系统存在的强输入非线性问题,采用了非线性分离策略,构造中间控制量,将该强非线性系统分离为线性动态环节和非线性静态环节,并仅针对线性动态环节设计了计算量小、易于硬件实现的线性二次型调节器(LQR),然后再通过反解输入非线性环节将中间控制量分配到实际的控制量——旋翼倾转角和电机转速.仿真实验结果表明,基于非线性分离策略设计的LQR飞行控制器能够实现对可倾转四旋翼稳定控制,很好地独立追踪位置和姿态期望.

    Abstract:

    We performed research on a quadrotor with tiltable-rotors,which has full controllability over the position and orientation,and established its dynamics system.To handle the system's strong nonlinearity problem,a nonlinear separation strategy was utilized to decompose the nonlinear system into a linear dynamic subsystem and a nonlinear static system by constructing intermediate control.Subsequently,linear quadratic regulator with small calculation and easy hardware implementation was designed only for linear dynamic subsystem while real control including tilting angle and motor speed was mapped from intermediate control by calculating the input nonlinear static subsystem.Simulation results illustrate that LQR flight controller based on nonlinear separation strategy not only performs well under a stable control,but also in independently tracking control of position and orientation.

    参考文献
    [1] 刘一莎,杨晟萱,王伟.四旋翼飞行器的自抗扰飞行控制方法[J].控制理论与应用,2015,32(10):1351-1360 LIU Yisha,YANG Shengxuan,WANG Wei.An active disturbance rejection fight control method for quad-rotor unmanned aerial vehicles[J].Control Theory & Applications,2015,32(10):1351-1360
    [2] Bonyan K H,Janabi-Sharifi F,Abdessameud A.Aerial manipulation:a literature survey[J].Robotics and Autonomous Systems,2018,107:221-235
    [3] 杨斌,何玉庆,韩建达,等.作业型飞行机器人研究现状与展望[J].机器人,2015,37(5):628-640 YANG Bin,HE Yuqing,HAN Jianda,et al.Survey on aerial manipulator systems[J].Robot,2015,37(5):628-640
    [4] Gawel A,Kamel M,Novkovic T,et al.Aerial picking and delivery of magnetic objects with MAVs[C]//International Conference on Robotics and Automation,2017:5746-5752
    [5] Kutia J R,Stol K A,Xu W L.Aerial manipulator interactions with trees for canopy sampling[J].ASME Transactions on Mechatronics,2018,23(4):1740-1749
    [6] Orsag M,Korpela C M,Bogdan S,et al.Hybrid adaptive control for aerial manipulation[J].Journal of Intelligent & Robotic Systems,2014,73(1/2/3/4):693-707
    [7] Muehlebach M,D'Andrea R.The flying platform:a testbed for ducted fan actuation and control design[J].Mechatronics,2017,42:52-68
    [8] Chowdhury A B,Kulhare A,Raina G.Back-stepping control strategy for stabilization of a tilt-rotor UAV[C]//Control & Decision Conference.IEEE,2012
    [9] Ryll M,Heinrich H B,Giordano P R.First flight tests for a quadrotor UAV with tilting propellers[C]//IEEE International Conference on Robotics & Automation.IEEE,2013:295-302
    [10] Ryll M,Bulthoff H H,Giordano P R.Modeling and control of a quadrotor UAV with tilting propellers[C]//IEEE International Conference on Robotics & Automation.IEEE,2012:4606-4613
    [11] Scholz G,Trommer G F.Model based control of a quadrotor with tiltable rotors[J].Gyroscopy and Navigation,2016,7(1):72-81
    [12] Hua M D,Hamel T,Morin P,et al.Introduction to feedback control of underactuated VTOLvehicles:a review of basic control design ideas and principles[J].IEEE Control Systems,2013,33(1):61-75
    [13] Voos H.Nonlinear control of a quadrotor micro-UAV using feedback-linearization[C]//IEEE International Conference on Mechatronics.IEEE,2009
    [14] Kamel M,Alexis K,Achtelik M,et al.Fast nonlinear model predictive control for multicopter attitude tracking on SO(3)[C]//2015 IEEE Conference on Control Applications(CCA).IEEE,2015
    [15] Kamel M,Verling S,Elkhatib O,et al.The voliro omniorientational hexacopter:an agile and maneuverable tiltable-rotor aerial vehicle[J].IEEE Robotics & Automation Magazine,2018,25(4):34-44
    [16] Ryll M,Bicego D,Franchi A.Modeling and control of FAST-Hex:a fully-actuated by synchronized-tilting hexarotor[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE,2016
    [17] 席裕庚.预测控制[M].北京:国防工业出版社,2013 XI Yugeng.Predictive control[M].Beijing:National Defence Industry Press,2013
    [18] Johansen T A,Fossen T I.Control allocation:a survey[J].Automatica,2013,49(5):1087-1103
    [19] 曾小勇,彭辉,吴军.四旋翼飞行器的建模与姿态控制[J].中南大学学报(自然科学版),2013,44(9):3693-3700 ZENG Xiaoyong,PENG Hui,WU Jun.Modeling and attitude control for a quad-rotor aircraft[J].Journal of Central South University (Science and Technology),2013,44(9):3693-3700
    [20] Bouabdallah S,André N,Siegwart R.PID vs LQ control techniques applied to an indoor micro quadrotor[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems.IEEE,2004
    相似文献
    引证文献
引用本文

卢凯文,杨忠,许昌亮,徐浩,陆可.基于非线性分离的可倾转四旋翼LQR飞行控制研究[J].南京信息工程大学学报(自然科学版),2019,11(4):390-397
LU Kaiwen, YANG Zhong, XU Changliang, XU Hao, LU Ke. LQR control of quadrotor with tiltable-rotors based on nonlinear separation strategy[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(4):390-397

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-20
  • 在线发布日期: 2019-09-03

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司