基于视图内字典原子不一致的多视图字典学习算法
作者:
基金项目:

国家自然科学基金重点项目(61432 008);国家自然科学基金项目(61876087)


Multi-view dictionary learning based on intra-view atom incoherence algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    传统的多视图字典学习算法旨在利用多视图数据间的相关性,未能考虑多视图数据的差异性,这可能会降低字典的学习性能.受此启发,提出一种基于视图内字典原子不一致的多视图字典学习算法.该算法为每个视图学习类属字典和共享字典,同时,引入编码系数方差的最小化约束,以降低视图间字典的差异性;此外,通过每个视图编码系数与所有视图编码系数均值之间距离的加权和的最小化来约束相应特征的贡献度;然后,施加视图内字典原子的不一致性约束以降低视图内字典的冗余.最后,在两个数据集(AR和Extended Yale B数据集)上的实验验证了所提算法的有效性.

    Abstract:

    The traditional multi-view dictionary learning algorithm is designed to take advantage of the correlation between multi-view data and fails to consider the distinctiveness of the multi-view data,which may reduce the performance of dictionary.Inspired by this observation,we present a multi-view dictionary learning based on the intra-view atom inconsistency algorithm.The algorithm learns class-specific dictionaries and the shared class dictionary for each view and calculates the minimum of the coding coefficient variance to reduce the distinctiveness of inter-view dictionaries.In addition,the minimization of the weighted sum of the distance between the coding coefficients between each view and the mean of coding coefficients for all views restrict the contribution of the corresponding features.Then,we embed the inconsistency constraint into the intra-view dictionaries to reduce redundancy.Finally,two datasets (AR and Extended Yale B datasets) were used to validate the effectiveness of the proposed algorithm.

    参考文献
    [1] Yuan X T,Yan S C.Visual classification with multi-task joint sparse representation[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,13-18 June 2010,San Francisco,CA,USA,2010:3493-3500
    [2] Zhang H C,Nasrabadi N M,Zhang Y N,et al.Multi-observation visual recognition via joint dynamic sparse representation[C]//2011 International Conference on Computer Vision,6-13 Nov.2011,Barcelona,Spain,2011:595-602
    [3] Yang M,Zhang L,Zhang D,et al.Relaxed collaborative representation for pattern classification[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition,16-21 June 2012,Providence,RI,USA,2012:2224-2231
    [4] Shekhar S,Patel V M,Nasrabadi N M,et al.Joint sparse representation for robust multimodal biometrics recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(1):113-126
    [5] Gao Z,Zhang H,Xu G P,et al.Multi-view discriminative and structured dictionary learning with group sparsity for human action recognition[J].Signal Processing,2015,112:83-97
    [6] Jia Y,Salzmann M,Darrell T.Factorized latent spaces with structured sparsity[C]//Proceedings of Neural Information Processing Systems (NIPS),2010:982-990
    [7] Zheng S,Xie B,Huang K Q,et al.Multi-view pedestrian recognition using shared dictionary learning with group sparsity[M]//Zheng S,Xie B,Huang K Q,et al.eds.Neural Information Processing.Berlin,Heidelberg:Springer Berlin Heidelberg,2011:629-638.DOI:10.1007/978-3-642-24965-5_71
    [8] Shi Y H,Gao Y,Yang Y B,et al.Multimodal sparse representation-based classification for lung needle biopsy images[J].IEEE Transactions on Biomedical Engineering,2013,60(10):2675-2685
    [9] Tosic I,Frossard P.Dictionary learning for stereo image representation[J].IEEE Transactions on Image Processing,2011,20(4):921-934
    [10] Jing X,Hu R,Wu F,et al.Uncorrelated multi-view discrimination dictionary learning for recognition[C]//Proceedings of Association for the Advancement of Artificial Intelligence (AAAI),2014:2787-2795
    [11] Yao T T,Wang Z Y,Xie Z,et al.Learning universal multiview dictionary for human action recognition[J].Pattern Recognition,2017,64:236-244
    [12] Zheng J J,Jiang Z L.Learning view-invariant sparse representations for cross-view action recognition[C]//2013 IEEE International Conference on Computer Vision,1-8 Dec. 2013,Sydney,NSW,Australia,2013:3176-3183
    [13] Patel V M,Gopalan R,Li R N,et al.Visual domain adaptation:a survey of recent advances[J].IEEE Signal Processing Magazine,2015,32(3):53-69
    [14] Wu F,Jing X Y,Yue D.Multi-view discriminant dictionary learning via learning view-specific and shared structured dictionaries for image classification[J].Neural Processing Letters,2017,45(2):649-666
    [15] Kong S,Wang D H.A dictionary learning approach for classification:separating the particularity and the commonality[M]//Kong S,Wang D H.eds.Computer Vision-ECCV 2012.Berlin,Heidelberg:Springer Berlin Heidelberg,2012:186-199.DOI:10.1007/978-3-642-33718-5_14
    [16] Wu F,Jing X Y,You X G,et al.Multi-view low-rank dictionary learning for image classification[J].Pattern Recognition,2016,50:143-154
    [17] Heisele B,Ho P,Poggio T.Face recognition with support vector machines:global versus component-based approach[C]//Proceedings Eighth IEEE International Conference on Computer Vision.ICCV 2001,7-14 July 2001,Vancouver,BC,Canada,2001:688-694
    [18] Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227
    [19] Zhang L,Yang M,Feng X C.Sparse representation or collaborative representation:which helps face recognition?[C]//2011 International Conference on Computer Vision,6-13 Nov. 2011,Barcelona,Spain,2011:471-478
    [20] Naseem I,Togneri R,Bennamoun M.Linear regression for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):2106-2112
    相似文献
    引证文献
引用本文

田泽,杨明,陈哲,石爱业.基于视图内字典原子不一致的多视图字典学习算法[J].南京信息工程大学学报(自然科学版),2019,11(3):309-315
TIAN Ze, YANG Ming, CHEN Zhe, SHI Aiye. Multi-view dictionary learning based on intra-view atom incoherence algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(3):309-315

复制
分享
文章指标
  • 点击次数:526
  • 下载次数: 1854
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-05-16
  • 在线发布日期: 2019-08-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司