推荐系统中物品召回技术的研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(U1605251,61832017,61631005,61502077)


Research progress on item recalling in recommender systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信息技术的快速发展导致信息过载.推荐系统是解决信息过载最有效的方式之一.近年来,深度学习的快速发展也带动了推荐系统的进步,各种深度推荐算法层出不穷.然而由于候选物品数量巨大且用户兴趣动态变化,深度推荐算法的推荐复杂度巨大,难以在实际系统中单独使用.在深度推荐技术发展的同时,物品召回技术(也称近似搜索技术)也有了较大的发展与进步.本文先介绍基于距离最小化的物品召回的研究进展,再从向量索引、局部敏感哈希、哈希学习、向量量化四个方面来深入探讨基于内积最大化的物品召回技术的研究进展.

    Abstract:

    The rapid development of information technology has led to information overload.Recommendation is one of 他the most effective ways to solve the information overload.In recent years,the rapid development of deep learning has also led to the advancement of recommender systems,and various deep learning based recommendation algorithms have emerged one after another.However,due to the large number of candidate items and the dynamic evolving of user interests,deep learning based recommendation algorithms suffer from computational burden of online recommendation.Therefore,it is almost impossible for these algorithms to be deployed alone in practice.With the development of deep learning based recommendation,the item recallingtechniques(also called approximated search techniques) has also made significant progress.This paper first introduces the research progress of the item recalling techniques based on the nearest neighbor search,and then discusses the research progress of the item recallingtechniquesbased on the maximum inner product search from the perspectives of indexing,locality sensitive hash,learning to hash and vector quantization.

    参考文献
    相似文献
    引证文献
引用本文

连德富,谢幸,陈恩红.推荐系统中物品召回技术的研究进展[J].南京信息工程大学学报(自然科学版),2019,11(3):241-250
LIAN Defu, XIE Xing, CHEN Enhong. Research progress on item recalling in recommender systems[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(3):241-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-08-06
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司