面向带电作业的手臂末端输出力评估方法
作者:
基金项目:

国家自然科学基金(61663027);中国博士后科学基金(2018M642137);江西省自然科学基金(20181BAB211019);江西省教育厅科学技术研究项目(GJJ160212);江苏省博士后科研资助计划(2018K024A)


Evaluation of output force at the arm end based on sEMG
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了解决带电作业时手臂末端输出力的准确控制,提出一种基于表面肌电信号(sEMG信号)和支持向量机回归(SVR)实现对手臂末端施力的评估方法.通过手握机械手臂末端的手柄,做往复推拉运动,记录此时手柄处的力传感器的数据F,同时利用3组肌电信号传感器同步采集手臂的肌电信号.将肌电信号提取特征后,与力F组合成样本集合S,在样本集合中随机抽取50%的样本数据作为训练集,分别训练BP神经网络、GRNN神经网络以及SVR神经网络.最后用训练好的神经网络对整个样本集中的力F进行预测,并用均方根误差和相关系数评估模型的预测效果.结果显示,SVR神经网络的预测效果较好,其均方根误差为3.074 0,相关系数为0.951 7.

    Abstract:

    To facilitate accurate control of the output force at the arm end during live working,a prediction method for arm end force based on surface electromyography (sEMG) and support vector machine regression (SVR) is proposed.By forcing the handle at the end of the manipulator to provide the reciprocating push and pull movement,the data of the force sensor at handle Fare recorded.Simultaneously,the EMG signals of the arm are synchronously collected by three sets of EMG sensors.The feature extraction from the EMG signal and F are combined as sample set S inthe sample collection.Half of the sample data is randomly selected as the training set for different machine learning methods,and trained using the back propagation,generalized regression,and SVR neural networks.Finally,the trained neural network is used to predict force F in the whole sample set,and the prediction effect of the model is obtained by means of the root mean square error (RMSE) and correlation coefficient.The results show that the prediction effect of the SVR neural network is better,the RMSE is 3.074 0,and the correlation coefficient R is 0.951 7.

    参考文献
    [1] 赵玲亚.高压带电作业机器人运动学分析与仿真[D].天津:天津大学,2007 ZHAO Lingya.Kinematics analysis and simulation of high-voltage live working robot[D].Tianjin:Tianjin University,2007
    [2] Al-Timemy A H,Bugmann G,Escudero J,et al.Classification of finger movements for the dexterous hand prosthesis control with surface electromyography[J].IEEE Journal of Biomedical and Health Informatics,2013,17(3):608-618
    [3] 鲁守银,傅孟潮,厉秉强,等.DWR-I遥操作高压带电作业机器人[J].上海交通大学学报,2005,39(6):910-913 LU Shouyin,FU Mengchao,LI Binqiang,et al.DWR-I teleoperation high voltage live working robot[J].Journal of Shanghai Jiaotong University,2005,39(6):910-913
    [4] 张启忠,席旭刚,马玉良,等.基于肌电信号的遥操作机器人控制技术[J].应用基础与工程科学学报,2013,21(6):1199-1209 ZHANG Qizhong,XI Xugang,MA Yuliang,et al.A control scheme based on EMG for teleoperation robot system[J].Journal of Basic Science and Engineering,2013,21(6):1199-1209
    [5] 罗志增,杨广映.基于触觉和肌电信号的假手模糊控制方法研究[J].机器人,2006,28(2):224-228 LUO Zhizeng,YANG Guangyin.Prosthetic hand fuzzy control based on touch and myoelectric signal[J].Robot,2006,28(2):224-228
    [6] Zhang F,Li P F,Hou Z G,et al.sEMG-based continuous estimation of joint angles of human legs by using BP neural network[J].Neurocomputing,2012,78(1):139-148
    [7] 顾毅,杨汝清,宋涛,等.关节式带电清扫机器人的绝缘性及安全性设计[J].机器人,2006,28(2):149-153 GU Yi,YANG Ruqing,SONG Tao,et al.Insulation and safety design of articulated cleaning robot[J].Robot,2006,28(2):149-153
    [8] 焦向东,周灿丰,薛龙,等.遥操作干式高压海底管道维修焊接机器人系统[J].焊接学报,2009,30(11):1-4 JIAO Xiangdong,ZHOU Chanfeng,XUE Long,et al.Teleoperation dry high pressure submarine pipeline maintenance welding robot system.[J].Transactions of The China Welding Institution,2009,30(11):1-4
    [9] Feng D,Dai L,Chang W,et al.sEMG-Based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform[J].IEEE Transactions on Industrial Electronics,2016,63(3):1923-1934
    [10] Ahsan M R,Ibrahimy M I,Khalifa O O.EMG signal classification for human computer interaction:a review[J].European Journal of Scientific Research,2009,33(3):480-501
    [11] 张启忠,席旭刚,罗志增.基于非线性特征的表面肌电信号模式识别方法[J].电子与信息学报,2013,35(9):2054-2058 ZHANG Qizhong,XI Xugang,LUO Zhizeng.A pattern recognition method for surface electromyography based on nonlinear features[J].Journal of Electronics & Information Technology,2013,35(9):2054-2058
    [12] Phinyomark A,Phukpattaranont P,Limsakul C.Feature reduction and selection for EMG signal classification[J].Expert Systems with Applications,2012,39(8):7420-7431
    [13] Young A J,Smith L H,Rouse E J,et al.Classification of simultaneous movements using surface EMG pattern recognition[J].IEEE Transactions on Biomedical Engineering,2013,60(5):1250-1258
    [14] 杨大鹏,赵京东,姜力,等.多抓取模式下人手握力的肌电回归方法[J].哈尔滨工业大学学报,2012,44(1):83-87 YANG Dapeng,ZHAO Jingdong,JIANG Li,et al.Force regression from EMG signals under different grasping patterns[J].Journal of Harbin Institute of Technology,2012,44(1):83-87
    [15] Cao H,Sun S,Zhang K.Modified EMG-based handgrip force prediction using extreme learning machine[J].Soft Computing,2017,21(2):491-500
    [16] Srinivasan H,Gupta S,Sheng W,et al.Estimation of hand force from surface electromyography signals using artificial neural network[C]//Intelligent Control and Automation.IEEE,2012:584-589
    [17] 杨杰,占君,张继传.MATLAB神经网络30例[M].北京:电子工业出版社,2014 YANG Jie,ZHAN Jun,ZHANG Jichuan.Thirty cases of MATLAB neural network[M].Beijing:Publishing House of Electronics industry,2014
    [18] 王文剑,门昌骞.支持向量机建模及应用[M].北京:科学出版社,2014 WANG Wenjian,MEN Changqian.Support vector machines modeling and application[M].Beijing:Science Press,2014
    [19] Zecca M,Micera S,Carrozza M C,et al.Control of multifunctional prosthetic hands by processing the electromyographic signal[J].Critical Reviews in Biomedical Engineering,2002,30(4/5/6):459
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林子,熊鹏文,何孔飞,张发辉.面向带电作业的手臂末端输出力评估方法[J].南京信息工程大学学报(自然科学版),2019,11(2):186-191
LIN Zi, XIONG Pengwen, HE Kongfei, ZHANG Fahui. Evaluation of output force at the arm end based on sEMG[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(2):186-191

复制
分享
文章指标
  • 点击次数:617
  • 下载次数: 2000
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-02-25
  • 在线发布日期: 2019-04-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司