电推进在电磁编队飞行碰撞规避控制中的应用
作者:
基金项目:

国家自然科学基金(91648206);江苏省重点研发计划(BE2018004-4)


Applying electric propulsion to collision avoidance process in electromagnetic formation flight
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    由于地球磁场的影响,电磁编队可以在近地轨道稳定飞行,通过改变电磁卫星磁极的电流大小来保持一定的编队队形.虽然地球磁场通常被看作偶极场,并随地球旋转,但地球磁场与电磁力场之间的相互作用被认为是一种内力.当电磁卫星编队突然遇到障碍物需要积极避障时,电磁力作为内力不能改变编队方向,因此,必须对电磁卫星编队施加外力,以实现碰撞规避控制.本文研究了电推进技术在电磁卫星编队碰撞规避中的应用.在此过程中,电推进提供编队转向所需的外部推力,而电磁力作为辅助推力共同作用实现碰撞规避.电推进采用多模态霍尔推力器,基于模糊推断的LQR重构控制方法进行碰撞规避过程的控制,并通过数字仿真验证了控制方法的有效性.

    Abstract:

    Electromagnetic formation flights(EMFFs) can be stabilized in low Earth orbit owing to the influence of Earth's magnetic field.Formation control is realized by changing the current magnitude of the magnetic pole of the EMFF.Although Earth's magnetic field is generally considered to be a dipole and rotates with Earth,the interaction between the magnetic fields of Earth and the EMFF is considered to be an internal force.When a small magnetic satellite formation encounters an obstacle that must be avoided,the current magnetic force,which acts as an internal force,cannot promote directional changes.Therefore,it is necessary to exert external forces on the EMFF to gain control.As a continuation of the application of electric propulsion (EP) to Coulomb satellite formation,this study investigates how EP may be applied to collision avoidance by EMFFs.During the process,the external thrust of the EMFF was provided by EP,which served as supplementary propulsion to realize obstacle avoidance.EP adopted multimode Hall thrusters,and a linear formation was employed by the EMFF.Using the linear quadratic regulator control method with an added fuzzy reference system,EMFF achieved collision avoidance with numerical simulation.

    参考文献
    [1] Peck M A.Prospects and challenges for Lorentz-augmented orbits[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit,San Francisco,CA,2005:15-18
    [2] Mai A U.Dynamics and control of electromagnetic formation flights in low each orbits[C]//AIAA Guidance Navigation,and Control Conference and Exhibit,Keystone,Colorado,2006
    [3] Pollock G E,Gangestad J W,Longuski J M.Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations[J].Acta Astronautica,2011,68(1/2):204-217
    [4] Yamakawa H,Bando M,Yano K,et al.Spacecraft relative dynamics under the infuluence of geomagnetic lorentz force[C]//Aiaa/aas Astrodynamics Specialist Conference.2013
    [5] Huang X,Yan Y,Zhou Y,et al.Improved analytical solutions for relative motion of Lorentz spacecraft with application to relative navigation in low Earth orbit[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2014,228(11):2138-2154
    [6] Huang X,Yan Y,Zhou Y.Dynamics and control of spacecraft hovering using the geomagnetic Lorentz force[J].Advances in Space Research,2014,53(3):518-531
    [7] Huang X,Yan Y,Zhou Y,et al.Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits[J].Acta Astronautica,2014,103:257-268
    [8] Peck M A,Streetman B,Saaj C M,et al.Spacecraft formation flying using Lorentz forces[J].Journal of the British Interplanetary Society,2007,60(7):263-267
    [9] Tsujii S,Bando M,Yamakawa H.Spacecraft formation flying dynamics and control using the geomagnetic Lorentz force[J].Journal of Guidance,Control,and Dynamics,2013,36(1):136-148
    [10] Sobiesiak L A,Damaren C J.Optimal hybrid control for Lorentz-augmented formation flying[C]//AIAA Guidance,Navigation,and Control Conference,Boston,MA,2013:19-22
    [11] Huang X,Yan Y,Zhou Y.Optimal spacecraft formation establishment and reconfiguration propelled by the geomagnetic Lorentz force[J].Advances in Space Research,2014,54(11):2318-2335
    [12] Gangestad J W,Pollock G E,Longuski J M.Lagrange's planetary equations for the motion of electrostatically charged spacecraft[J].Celestial Mechanics and Dynamical Astronomy,2010,108:125-145
    [13] Gangestad J W,Pollock G E,Longuski J M.Analytical expressions that characterize propellantless capture with electrostatically charged spacecraft[J].Journal of Guidance,Control and Dynamics,2011,34:247-258
    [14] Pollock G E,Gangestad J W,Longuski J M.Inclination change in low-earth orbit via the geomagnetic Lorentz force[J].Journal of Guidance,Control,and Dynamics,2010,33(5):1387-1395
    [15] Huang X,Yan Y,Zhou Y,et al.Output feedback control of Lorentz-augmented spacecraft rendezvous[J].Aerospace Science and Technology,2015,42:241-248
    [16] Cai W W,Yang L P,Zhu Y W,et al.Optimal satellite formation reconfiguration actuated by inter-satellite electromagnetic forces[J].Acta Astronautica,2013,89:154-165
    [17] Saaj C M,Lappas V,Schaub H,et al.Hybrid propulsion system for formation flying using electrostatic forces[J].Aerospace Science and Technology,2010,14(5):348-355
    [18] Wang T.Collision avoidance of Coulomb spacecraft formations using multi-mode hall thrusters[J].Aerospace Science and Technology,2017,68:261-268
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白敬,王婷.电推进在电磁编队飞行碰撞规避控制中的应用[J].南京信息工程大学学报(自然科学版),2019,11(2):180-185
BAI Jing, WANG Ting. Applying electric propulsion to collision avoidance process in electromagnetic formation flight[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(2):180-185

复制
分享
文章指标
  • 点击次数:600
  • 下载次数: 1834
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-02-25
  • 在线发布日期: 2019-04-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司