基于ANOVA和BP神经网络的最优肌电信号测量位置选择
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61803201,91648206);江苏省自然科学基金(BK20170803);中央高校基本科研业务费资助项目(NS2018023)


EMG measurement position optimization based on ANOVA and BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于肌电信号的手部动作识别中,肌电信号测量位置的选择直接关系到动作识别的准确率.本文以使用最少的肌电传感器和获得较高的动作识别率为目标,提出一种基于ANOVA (方差分析)和BP神经网络的肌电信号测量位置优选方法.使用4个肌电传感器采集受试者做出指定动作时的肌电信号,提取肌电信号的时域特征,并按测量位置组合构成15个不同的样本进行BP神经网络的训练和测试.采用单因素ANOVA分析测量位置对动作识别结果影响的显著性,采用Tukey HSD将测量位置进行归类,并从动作识别率最高的子集中选择测量位置最少但识别准确率最高的测量位置组合作为最优的肌电信号测量位置.实验结果表明,测量位置对动作识别的结果具有显著的影响,随着测量位置数的增加,动作识别准确率呈上升趋势,最优的测量位置组合为P1+P3+P4,其动作识别准确率为94.6%.

    Abstract:

    The locations of electromyography (EMG) measurements are directly related to the accuracy of motion recognitionin hand gesture recognition based on EMG signals.This study proposes an EMG measurement position optimization strategy based on ANOVA and back propagation (BP) neural network to obtain the best motion recognition with the fewest EMG sensors.Four EMG sensors are used to capture the EMG signals when the subjects perform specific hand gestures.Feature data extracted from the raw EMG signals are combined into 15 different vectors according to different measurement position combinations.These 15 feature vectors are used to train and test the BP neural network.Single factor analysis of variance (ANOVA)is employed to analyze the significance of the influence of the measured position on themotion recognition.Tukey's honest significant differencetest is adopted to classify the position combinations.The position combinations are divided into several subsets.In the subset with the highest recognition rate,the position combination with the least measurement position and the highest recognition accuracy is considered to be the optimized measurement position.The experimental results show that the measurement position has a significant impact on the results of motion recognition.The accuracy of motion recognition shows an upward trend with the increase in measurement position.The optimal combination of measurement position is P1+P3+P4,and the accuracy of motion recognition is 94.6%.

    参考文献
    相似文献
    引证文献
引用本文

吴常铖,严余超,曹青青,费飞,杨德华,徐宝国,宋爱国.基于ANOVA和BP神经网络的最优肌电信号测量位置选择[J].南京信息工程大学学报(自然科学版),2019,11(2):173-179
WU Changcheng, YAN Yuchao, CAO Qingqing, FEI Fei, YANG Dehua, XU Baoguo, SONG Aiguo. EMG measurement position optimization based on ANOVA and BP neural network[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(2):173-179

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-25
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司