马尔可夫切换的汽车悬架系统的事件触发H滤波
作者:
中图分类号:

TP273

基金项目:

国家自然科学基金(61673178,61803159,61602163);上海国际科技合作项目(15220710700);上海曙光计划(16SG28);上海自然科学基金(17ZR1444700,18ZR1409600);上海市青年科技英才扬帆计划(18YF1406400);中国博士后科学基金(2018M032042);中央高校基本科研业务费(222201814040);青岛大学系统科学开放基金;湖北省高等学校优秀中青年科技创新团队(T201710)


Event-triggered H filtering of car suspension systems with Markovian switching
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对具有马尔可夫切换信道的两自由度(2-DOF) 四分之一汽车悬架系统,研究了事件触发 H 滤波问题.首先,信道切换由马尔可夫链控制;其次,考虑到事件触发的通信方案,由于有限的网络带宽,产生信号量化和随机丢包问题;然后,采用马尔可夫线性跳变系统模型来表示整个滤波网络系统.利用Lyapunov泛函和线性矩阵不等式方法将事件触发 H 滤波问题转化为凸优化问题,从而设计了切换信道相关的滤波器,使得滤波误差系统在均方意义上是指数稳定的并达到期望的性能水平.最后,通过仿真实例验证了所提出的设计方法的有效性.

    Abstract:

    An event-triggered H state estimation problem is investigated in this paper for a two-degrees-of-freedom(2-DOF) quarter-car suspension system operated over a switching-channel network environment.First,the channelswitching is governed by a Markov chain.Then,a Markov jump linear system model is adopted to represent the overall networked system in accordance with the event-triggered communication scheme,signal quantization,and random packet losses on account of the limited network bandwidth.Using the Lyapunov functional and linear matrix inequality method,the event-triggered H state estimation problem is transformed into an optimization problem,theswitching-channel-dependent filters of which are designed such that the filter error system is exponentially stable in the mean square sense and achieves the desired performance level.Finally,a simulation example is used to demonstrate the validity of the proposed design.

    参考文献
    [1] Li H Y,Jing X J,Karimi H R.Output-feedback-based H control for vehicle suspension systems with control delay[J].IEEE Transactions on Industrial Electronics,2014,61(1):436-446
    [2] Wang R R,Jing H,Karimi H R,et al.Robust fault tolerant H control of active suspension systems with finite-frequency constraint[J].Mechanical Systems & Signal Processing,2015,62/63(4702):341-355
    [3] Yan H C,Qian F F,Zhang H,et al.H fault detection for networked mechanical spring-mass systems with incomplete information[J].IEEE Transactions on Industrial Electronics,2016,63(9):5622-5631
    [4] Zapateiro M,Pozo F,Karimi H R,et al.Semiactive control methodologies for suspension control with magnetorheological dampers[J].ASME Transactions on Mechatronics,2012,17(2):370-380
    [5] Wang Z F,Dong M M,Qin Y C,et al.Suspension system state estimation using adaptive Kalman filtering based on road classification[J].Vehicle System Dynamics,2017,55(3):371-398
    [6] Pletschen N,Diepold K J.Nonlinear state estimation for suspension control applications:a Takagi-Sugeno Kalman filtering approach[J].Control Engineering Practice,2017,61:292-306
    [7] Sun W C,Pan H H,Gao H J.Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators[J].IEEE Transactions on Vehicular Technology,2016,65(6):4619-4626
    [8] Zhang D,Xu Z H,Karimi H R,et al.Distributed filtering for switched linear systems with sensor networks in presence of packet dropouts and quantization[J].IEEE Transactions on Circuits & Systems Ⅰ:Regular Papers,2017,64(10):2783-2796
    [9] Fu M Y,Xie L H.The sector bound approach to quantized feedback control[J].IEEE Transactions on Automatic Control,2005,50(11):1698-1711
    [10] Yin X Y,Zhang L X,Ning Z P,et al.State estimation via Markov switching-channel network and application to suspension systems[J].IET Control Theory & Applications,2017,11(3):411-419
    [11] Yan H C,Zhang H,Yang F W,et al.Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(8),3588-3598
    [12] Li Q,Shen B,Liu Y R,et al.Event-triggered H state estimation for discrete-time stochastic genetic regulatory networks with Markovian jumping parameters and time-varying delays[J].Neurocomputing,2016,174:912-920
    [13] Zhang H,Zheng X Y,Yan H C,et al.Codesign of event-triggered and distributed H filtering for active semi-vehicle suspension systems[J].ASME Transactions on Mechatronics,2017,22(2):1047-1058
    [14] Yan H C,Zhang H,Yang F W,et al.Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(8):3588-3598
    [15] Peng C,Han Q L,Dong Y.To transmit or not to transmit:a discrete event-triggered communication scheme for networked Takagi-Sugeno fuzzy systems[J].IEEE Transactions on Fuzzy Systems,2013,21(1):164-170
    [16] Zhang H,Wang Z P,Yan H C,et al.Adaptive event-triggered transmission scheme and H filtering co-design over a filtering network with switching topology[J].IEEE Transactions on Cybernetics,2018,DOI:10.1109/TCYB.2018.2862828
    [17] Zhang D,Wang Q G,Srinivasan D,et al.Asynchronous state estimation for discrete-time switched complex networks with communication constraints[J].IEEE Transactions on Neural Networks & Learning Systems,2018,29(5):1732-1746
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙家玉,严怀成,李郅辰,詹习生.马尔可夫切换的汽车悬架系统的事件触发H滤波[J].南京信息工程大学学报(自然科学版),2018,10(6):731-739
SUN Jiayu, YAN Huaicheng, LI Zhichen, ZHAN Xisheng. Event-triggered H filtering of car suspension systems with Markovian switching[J]. Journal of Nanjing University of Information Science & Technology, 2018,10(6):731-739

复制
分享
文章指标
  • 点击次数:502
  • 下载次数: 1792
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2018-08-06
  • 在线发布日期: 2018-12-18

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司