基于空-谱先验条件随机场的高分辨率遥感影像变化检测方法
作者:
基金项目:

国家自然科学基金优秀青年基金(41622107);国家重点研发计划(2017YFB0504202);国家自然科学基金(41771385)


Change detection based on conditional random field model with spectral-spatial prior information for high spatial resolution remote sensing imagery
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    高空间分辨率遥感影像能够提供丰富的空间细节信息,使利用遥感影像进行精细变化检测成为可能.为充分挖掘高分辨率影像中的光谱、空间信息,本文提出一种基于影像空-谱先验信息的条件随机场(Conditional Random Field based on Spectral-Spatial Prior,SSPCRF)模型,该方法使用显著性检测方式自动提供先验光谱-空间样本信息,提高一元势能构建精度,有效缓解一元势能构建不准确导致的推理过程中的误差传递问题,并在二元势能中综合考虑标记场与观察影像的空间上下文信息以保持变化地物轮廓信息.最后,使用基于消息传递机制的推理方法将模型进行全局优化.在2组高分辨率影像数据集上的实验结果表明该方法能够提供较精确的初始变化检测信息,使得在减少变化检测结果中虚警点的同时保持变化地物细节信息.

    Abstract:

    In this paper,a conditional random field model based on spectral-spatial prior information (SSPCRF) is proposed to perform the task of change detection for high spatial resolution remote sensing images.The proposed method firstly introduces a saliency based sample selection strategy which considers the spectral-spatial information of observed difference image to improve the accuracy of modeling initial change detection result.Then a pairwise potential with boundary constraint is used to help keep the boundary of changed objects.Finally an inference method based on loopy belief propagation (LBP) algorithm is introduced to perform efficient optimization of the proposed model and get the final change map.The proposed SSPCRF model can greatly improve change detection accuracy while keeping detailed boundary information of changed objects.The proposed method is tested on two high resolution datasets and outperforms the commonly used change detection methods.

    参考文献
    [1] Singh A.Review article digital change detection techniques using remotely-sensed data[J].Int J Remote Sens,1989,10(6):989-1003
    [2] Hussain M,Chen D M,Cheng A,et al.Change detection from remotely sensed images:From pixel-based to object-based approaches[J].ISPRS J Photogramm Remote Sens,2013,80(2):91-106
    [3] Tewkesbury P,Comber A J,Tate N J,et al.A critical synthesis of remotely sensed optical image change detection techniques[J].Remote Sens Environ,2015,160:1-14
    [4] Deng J S,Wang K,Deng Y H,et al.PCA-based land-use change detection and analysis using multi-temporal and multi-sensor satellite data[J].Int J Remote Sens,2008,29(16):4823-4838
    [5] Bovolo F,Bruzzone L.A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J].IEEE Trans Geosci Remote Sens,2007,45(1):218-236
    [6] Nielsen A,Conradsen K,Simpson J J.Multivariate alteration detection (MAD) and MAF postprocessing in multispectral,bitemporal image data:New approaches to change detection studies[J].Remote Sens Environ,1998,64(1):1-19
    [7] Melgani F,Moser G,Serpico S B.Unsupervised change-detection methods for remote-sensing images[J].Opt Eng,2002,41(12):3288-3297
    [8] 宋翠玉,李培军,杨锋杰.运用多尺度图像纹理进行城市扩展变化检测[J].国土资源遥感,2006,18(3):37-42 SONG Cuiyu,LI Peijun,YANG Fengjie.The application of multiscale image texture to the detection of urban expansion[J].Remote Sensing for Land and Resources,2006,18(3):37-42
    [9] 李淑坤,李培军,程涛.加入多时相纹理的遥感变化检测[J].国土资源遥感,2009,21(3):35-40 LI Shukun,LI Peijun,CHENG Tao.Remote sensing change detection by inclusion of multitemporal texture[J].Remote Sensing for Land and Resources,2009,21(3):35-40
    [10] 杜培军,柳思聪.融合多特征的遥感影像变化检测[J].遥感学报,2012,16(4):663-677 DU Peijun,LIU Sicong.Change detection from multi-temporal remote sensing images by integrating multiple features[J].Journal of Remote Sensing,2012,16(4):663-667
    [11] Castilla G,Hay G J.Image objects and geographic objects[M]//Blaschke T,Lang S,Hay G J.Object-based image analysis:Spatial concepts for knowledge-driven remote sensing applications.New York:Springer-Verlag,2008:91-110
    [12] Blaschke T.Object based image analysis for remote sensing[J].ISPRS J Photogramm Remote Sens,2010,65(1):2-16
    [13] Chen G,Hay G J,Carvalho L M,et al.Object-based change detection[J].Int J Remote Sens,2012,33(14):4434-4457
    [14] Niemeyer I,Marpu P R,Nussbaum S.Change detection using object features[M]//Blaschke T,Lang S,Hay G J.Object-based image analysis:Spatial concepts for knowledge-driven remote sensing applications.New York:Springer-Verlag,2008:185-201
    [15] 冯文卿,眭海刚,涂继辉,等.联合像素级和对象级分析的遥感影像变化检测[J].测绘学报,2017,46(9):1147-1155 FENG Wenqing,SUI Haigang,TU Jihui,et al.Remote sensing image change detection based on the combination of pixel-level and object-level analysis[J].Acta Geodaetica et Cartographica Sinica,2017,46(9):1147-1155
    [16] 冯文卿,张永军.利用多尺度融合进行面向对象的遥感影像变化检测[J].测绘学报,2015,44(10):1142-1151 FENG Wenqing,ZHANG Yongjun.Object-oriented change detection for remote sensing images based on multi-scale fusion[J].Acta Geodaetica et Cartographica Sinica,2015,44(10):1142-1151
    [17] Geman S,Geman D.Stochastic relaxation,Gibbs distributions,and the Bayesian restoration of images[C]//IEEE Trans Pattern Anal Mach.Intell,1984:721-741
    [18] Melgani F,Bazi Y.Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery[J].IEEE Geosci Remote Sens Lett,2006,3(4):457-461
    [19] Benedek C,Szirányi T.Change detection in optical aerial images by a multilayer conditional mixed Markov model[J].IEEE Trans Geosci Remote Sens,2009,47(10):3416-3430
    [20] Bruzzone L,Prieto D F.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Trans Geosci Remote Sens,2000,38(3):1171-1182
    [21] Kumar S,Hebert M.Discriminative random fields[J].Int J Comput Vis,2006,68(2):179-201
    [22] Zhong P,Wang R S.Learning conditional random fields for classification of hyperspectral images[J].IEEE Trans Image Process,2010,19(7):1890-1907
    [23] Zhong Y F,Lin X M,Zhang L P.A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery[J].IEEE J Sel Topics Appl Earth Observ Remote Sens,2014,7(4):1314-1330
    [24] Zhao J,Zhong Y F,Zhang L P.Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery[J].IEEE Trans Geosci Remote Sens,2015,53(5):2440-2452
    [25] Hoberg T,Rottensteiner F,Feitosa R Q,et al.Conditional random fields for multitemporal and multiscale classification of optical satellite imagery[J].IEEE Trans Geosci Remote Sens,2015,53(2):659-673
    [26] LV P Y,Zhong Y F,Zhao J,et al.Change detection based on a multifeature probabilistic ensemble conditional random field model for high spatial resolution remote sensing imagery[J].IEEE Geosci Remote Sens Lett,2016,13(12):1965-1969
    [27] Zhou L C,Cao G,Li Y P,et al.Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images[J].IEEE J Sel Topics Appl Earth Observ Remote Sens,2017,9(8):3478-3488
    [28] Cao G,Zhou L C,Li Y P.A new change-detection method in high-resolution remote sensing images based on a conditional random field model[J].Int J Remote Sens,2016,37(5):1173-1189
    [29] Hou X D,Harel J,Koch C.Image signature:Highlighting sparse salient regions[J].IEEE Trans Pattern Anal Mach Intell,2012,34(1):194-201
    [30] Fawcett T.An introduction to ROC analysis[J].Pattern Recognit Lett,2006,27(8):861-874
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕鹏远,钟燕飞,赵济,张良培.基于空-谱先验条件随机场的高分辨率遥感影像变化检测方法[J].南京信息工程大学学报(自然科学版),2018,10(1):123-130
L&#; Pengyuan, ZHONG Yanfei, ZHAO Ji, ZHANG Liangpei. Change detection based on conditional random field model with spectral-spatial prior information for high spatial resolution remote sensing imagery[J]. Journal of Nanjing University of Information Science & Technology, 2018,10(1):123-130

复制
分享
文章指标
  • 点击次数:1183
  • 下载次数: 2439
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-11-27
  • 在线发布日期: 2018-01-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司