融合无人机LiDAR和高分辨率光学影像的点云分类方法
作者:
基金项目:

国家自然科学基金(41571331);新疆兵团空间信息创新团队项目(2016AB001)


Fusion of high-resolution optical image and unmanned aerial vehicle LiDAR for 3D point cloud classification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    点云分类是激光点云数据处理的重要环节,探索自动、高效、高精度的点云分类方法具有重要意义.通过分析同机获取的LiDAR点云与高分辨率光学影像的特点,提出了融合无人机LiDAR与高分辨率光学影像的点云分类方法.首先将LiDAR点云投影到二维平面并构建不规则三角网模型,然后寻找同名点对完成与光学影像的配准与融合,进而将光学影像的光谱信息赋予无人机LiDAR点云,接着从光学影像上提取光谱特征、从LiDAR点云上提取多尺度几何特征构建分类特征集,进一步通过CFS特征选择算法实现特征集的降维,最后运用随机森林分类算法实现点云分类.实验结果表明,本文分类方法的总体精度可达89.5%,Kappa系数为0.844,与未经特征选择的分类结果相比精度提高了1.1个百分点,与单纯依靠LiDAR或者光学影像的分类相比,精度分别提高了5.4和14.9个百分点.本文方法不仅有效避免了基于点云属性内插构建新的图像融合方式带来的计算误差,同时解决了单尺度下构建几何特征时难以确定最优空间分析尺度的问题,并且对特征集进行优化选择从而有效提高了数据处理的效率.

    Abstract:

    Point cloud classification is a critical step in the processing of LiDAR data,and exploring new automatic,efficient,high accuracy classification method is of great importance.This paper proposed a new method for point cloud classification by analyzing the feature of optical image and LiDAR data from the same aircraft.First,a TIN model was made by interpolating the LiDAR data which was projection transformed,then the registration fusion of LiDAR and optical image was achieved according to the correspondence vertexes of the two data,and the RGB attribution information from optical image was combined into LiDAR data later.Second,classification feature set was built by extracting the spectral features from optical image and multi-scale geometric features from LiDAR data.Third,a CFS feature selection method was used to reduce dimension of the classification set.Finally,a supervised classification was conducted using a random forest algorithm to classify the point cloud.Results indicate that,the overall accuracy and Kappa coefficient of the proposed method is 89.5% and 0.844,respectively.And the proposed method get an improvement in the overall accuracy by 1.1,5.4 and 14.9 percentage point when compared with no feature selection strategy,only using LiDAR data and only using optical image,respectively.The proposed method not only efficiently reduce the interpolation error when fusion based on point cloud interpolation,but also solve the problem for choosing the optimal scale to extract geometry feature in a certain analytical scale,and the data are able to be processed more efficiently when feature selection is adopted.

    参考文献
    [1] 郭波,黄先锋,张帆,等.顾及空间上下文关系的JointBoost点云分类及特征降维[J].测绘学报,2013(5):715-721 GUO Bo,HUANG Xianfeng,ZHANG Fan,et al.Points cloud classification using joint boost combined with contextual information for feature reduction[J].Acta Geodaetica et Cartographica Sinica,2013,42(5):715-721
    [2] 徐宏根,王建超,郑雄伟,等.面向对象的植被与建筑物重叠区域的点云分类方法[J].国土资源遥感,2012,24(2):23-27 XU Honggen,WANG Jianchao,ZHENG Xiongwei,et al.Object-based point clouds classification of the vegetation and building overlapped area[J].Remote Sensing for Land& Resources,2012,24(2):23-27
    [3] Díaz-Vilariño L,González-Jorge H,Bueno M,et al.Automatic classification of urban pavements using mobile LiDAR data and roughness descriptors[J].Construction and Building Materials,2016,102:208-215
    [4] Karila K,Matikainen L,Puttonen E,et al.Feasibility of multispectral airborne laser scanning data for road mapping[J].IEEE Geoscience and Remote Sensing Letters,2017,14(3):294-298
    [5] Pahlavani P,Amirkolaee H A,Bigdeli B.3D reconstruction of buildings from LiDAR data considering various types of roof structures[J].International Journal of Remote Sensing,2017,38(5):1451-1482
    [6] 陈驰,麦晓明,宋爽,等.机载激光点云数据中电力线自动提取方法[J].武汉大学学报(信息科学版),2015,40(12):1600-1605 CHEN Chi,MAI Xiaoming,SONG Shuang,et al.Automatic power lines extraction method from airborne LiDAR point cloud[J].Geomatics and Information Science of Wuhan University,2015,40(12):1600-1605
    [7] 余洁,穆超,冯延明,等.机载LiDAR点云数据中电力线的提取方法研究[J].武汉大学学报(信息科学版),2011,36(11):1275-1279 YU Jie,MU Chao,FENG Yanming,et al.Powerlines extraction techniques from airborne LiDAR data[J].Geomatics and Information Science of Wuhan University,2011,36(11):1275-1279
    [8] Antonarakis A S,Richards K S,Brasington J.Object-based land cover classification using airborne LiDAR[J].Remote Sensing of Environment,2008,112(6):2988-2998
    [9] Niemeyer J,Wegner J D,Mallet C,et al.Conditional random fields for urban scene classification with full waveform LiDAR data[C]//ISPRS Conference on Photogrammetric Image Analysis 2011:233-244
    [10] Wu M F,Sun Z C,Yang B,et al.A hierarchical object-oriented urban land cover classification using WorldView-2 imagery and airborne LiDAR data[J].IOP Conference Series:Earth and Environmental Science,2016,46(1):012016
    [11] 程晓光,黄先锋,张帆.机载LiDAR数据的城区树木点提取方法[J].测绘科学,2014,39(3):52-56 CHENG Xiaoguang,HUANG Xianfeng,ZHANG Fan.A spatial distribution pattern-based urban tree points extraction method in airborne LiDAR[J].Science of Surveying and Mapping,2014,39(3):52-56
    [12] 程效军,程小龙,胡敏捷,等.融合航空影像和LIDAR点云的建筑物探测及轮廓提取[J].中国激光,2016,43(5):247-255 CHENG Xiaojun,CHENG Xiaolong,HU Minjie,et al.Buildings detection and contour extraction by the fusion of aerial images and LIDAR point cloud[J].Chinese Journal of Lasers,2016,43(5):247-255
    [13] Zhang J X,Lin X G.Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing[J].International Journal of Image and Data Fusion,2017,8(1):1-31
    [14] Rastiveis H.Decision level fusion of LIDAR data and aerial color imagery based on Bayesian theory for urban area classification[J].International Archives of the Photogrammetry Remote Sensing & Spatial Information Sciences,2015,XL-1/W5:589-594
    [15] Guo L,Chehata N,Mallet C,et al.Relevance of airborne LiDAR and multispectral image data for urban scene classification using random forests[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(1):56-66
    [16] Mumtaz S A,Mooney K.Fusion of high resolution LiDAR and aerial images for object extraction[C]//International Conference on Advances in Space Technologies,2008:137-142
    [17] Salah M,Trinder J,Shaker A.Evaluation of the self-organizing map classifier for building detection from Lidar data and multispectral aerial images[J].Journal of Spatial Science,2009,54(2):15-34
    [18] Dechesne C,Mallet C,Bris A L,et al.Forest stand segmentation using airborne lidar data and very high resolution multispectral imagery[J].International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences,2016,XLI-B3:207-214
    [19] Vo A V,Truong-Hong L,Laefer D F.Aerial laser scanning and imagery data fusion for road detection in city scale[C]//IEEE International Symposium on Geoscience and Remote Sensing,2015:4177-4180
    [20] Kang Z Z,Yang J T,Zhong R F.A Bayesian-network-based classification method integrating airborne LiDAR data with optical images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(4):1651-1661
    [21] Chen Y H,Su W,Li J,et al.Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas[J].Advances in Space Research,2009,43(7):1101-1110
    [22] Ke Y,Quackenbush L J,Im J.Synergistic use of quick bird multispectral imagery and LIDAR data for object-based forest species classification[J].Remote Sensing of Environment,2010,114(6):1141-1154
    [23] Li S H,Li Z Y,Wang H S,et al.Urban land cover classification using aerial LiDAR and CCD images[C]//IEEE Geoscience and Remote Sensing Symposium,2014:1967-1970
    [24] 杨晓峰.基于仿射变换模型的图像目标定位跟踪方法[D].武汉:华中科技大学,2005 YANG Xiaofeng.Image target location and tracking based on affine transform model[D].Wuhan:Huazhong University of Science and Technology,2005
    [25] Verbesselt J,Hyndman R,Newnham G,et al.Detecting trend and seasonal changes in satellite image time series[J].Remote Sensing of Environment,2010,114(1):106-115
    [26] 汪小钦,王苗苗,王绍强,等.基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015,31(5):152-159 WANG Xiaoqin,WANG Miaomiao,WANG Shaoqiang,et al.Extraction of vegetation information from visible unmanned aerial vehicle images[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(5):152-159
    [27] Brodu N,Lague D.3D terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion:Applications in geomorphology[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68:121-134
    [28] 姚旭,王晓丹,张玉玺,等.特征选择方法综述[J].控制与决策,2012,27(2):161-166 YAO Xu,WANG Xiaodan,ZHANG Yuxi,et al.Summary of feature selection algorithms[J].Control and Decision,2012,27(2):161-166
    [29] Hall M A.Correlation-based feature subset selection for machine learning[D].Hamilton,New Zealand:University of Waikato,1998
    [30] Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32
    [31] Guo L,Chehata N,Mallet C,et al.Relevance of airborne lidar and multispectral image data for urban scene classification using random forests[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(1):56-66
    [32] Hall M,Frank E,Holmes G,et al.The WEKA data mining software:An update[J].ACM SIGKDD Explorations Newsletter,2009,11(1):10-18
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高仁强,张显峰,孙敏,赵庆展.融合无人机LiDAR和高分辨率光学影像的点云分类方法[J].南京信息工程大学学报(自然科学版),2018,10(1):102-112
GAO Renqiang, ZHANG Xianfeng, SUN Min, ZHAO Qingzhan. Fusion of high-resolution optical image and unmanned aerial vehicle LiDAR for 3D point cloud classification[J]. Journal of Nanjing University of Information Science & Technology, 2018,10(1):102-112

复制
分享
文章指标
  • 点击次数:1207
  • 下载次数: 3292
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-11-04
  • 在线发布日期: 2018-01-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司