基于边缘指导的双通道卷积神经网络单图像超分辨率算法
作者:
基金项目:

国家自然科学基金(61372184);北京市自然科学基金(4162056)


Edge guided dual-channel convolutional neural network for single image super resolution algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    当前基于卷积神经网络(CNN)的超分辨率(SR)重建算法,虽然取得了很大的成功,但是重建图像高频纹理的效果仍然不能令人满意,其高分辨率(HR)图像局部边缘存在明显的震荡.本文提出一种结合形态学成分分析(MCA)分解的边缘指导双通道CNNSR算法:待处理的低分辨率(LR)图像通过MCA分解为纹理部分和平滑结构部分;纹理部分和原LR图像共同组成双通道,输入到改进的网络结构中重建HR纹理部分;结合HR纹理输出与LR平滑结构部分重建HR图像.训练过程采用最小化纹理损失与原图像损失之和最优化网络模型参数.后处理包括:执行网络输出与LR输入图像的直方图匹配使色调保持一致,提升感官效果;应用迭代的反向映射使HR重建与LR输入保持退化算子一致性提高PSNR值.实验结果显示:该方法能够很好地恢复HR图像的纹理细节,对纹理细节丰富的图像恢复效果更好.

    Abstract:

    At present,although the super-resolution (SR) reconstruction algorithm based on the Convolutional Neural Network (CNN) has achieved great success,it cannot well reconstruct the high-frequency texture of the image.As a result,there exists obvious shake in local edge of the high-resolution (HR) image.We present an edge guided dual-channel CNN SR reconstruction algorithm integrated with Morphological Component Analysis (MCA).The low-resolution (LR) image to be processed is decomposed into texture part and structure part by MCA,then the texture part and the original LR image form a dual channel together,which is then input into the modified network structure to reconstruct the HR texture part.The reconstruction loss of both the HR image and HR texture are chosen simultaneously for training.As for post-processing step,we perform histogram matching between our network output and the LR input to strengthen the visual effect and apply an iterative back projection refinement to improve the PSNR.As shown in experiment results,this method with dual-channel input can restore texture details of the image,especially restore the image with rich texture.

    参考文献
    [1] Zhang L,Wu X L.An edge-guided image interpolation algorithm via directional filtering and data fusion[J].IEEE Transactions on Image Processing,2006,15(8):2226-2238
    [2] Rasti P,Demirel H,Anbarjafari G.Image resolution enhancement by using interpolation followed by iterative back projection[C]//IEEE Signal Processing and Communications Applications Conference,2013,DOI:10.1109/SIU.2013.6531593
    [3] Freeman W T,Jones T R,Pasztor E C.Example-based super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65
    [4] Chang H,Yeung D Y,Xiong Y M.Super-resolution through neighbor embedding[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004,DOI:10.1109/CVPR.2004.1315043
    [5] Chan T M,Zhang J P,Pu J,et al.Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J].Pattern Recognition Letters,2009,30(5):494-502
    [6] Yang J C,Wright J,Huang T S,et al.Image super-resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8
    [7] Yang J C,Wright J,Huang T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873
    [8] Jing G D,Shi Y H,Lu B.Single-image super-resolution based on decomposition and sparse representation[C]//International Conference on Multimedia Communications,2011:127-130
    [9] Dong C,Loy C C,He K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307
    [10] Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems,2012:1097-1105
    [11] Bobin J,Starck J L,Fadili J M,et al.Morphological component analysis:An adaptive thresholding strategy[J].IEEE Transactions on Image Processing,2007,16(11):2675-2681
    [12] Starck J L,Elad M,Donoho D L.Image decomposition via the combination of sparse representations and a variational approach[J].IEEE Transactions on Image Processing,2005,14(10):1570-1582
    [13] Timofte R,De Smet V,Van Gool L.A+:Adjusted anchored neighborhood regression for fast super-resolution[C]//Asian Conference on Computer Vision,2014:111-126
    [14] Wang Z W,Liu D,Yang J C,et al.Deeply improved sparse coding for image super-resolution[J].arXiv e-print,2015,arXiv:1507.08905
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李春平,周登文,贾慧秒.基于边缘指导的双通道卷积神经网络单图像超分辨率算法[J].南京信息工程大学学报(自然科学版),2017,9(6):669-674
LI Chunping, ZHOU Dengwen, JIA Huimiao. Edge guided dual-channel convolutional neural network for single image super resolution algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2017,9(6):669-674

复制
分享
文章指标
  • 点击次数:1063
  • 下载次数: 2652
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-08-28
  • 在线发布日期: 2017-11-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司