多种信息融合的实时在线多目标跟踪
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省自然科学青年基金(BK20150784);中国博士后基金面上项目(2015M581800);中央高校基本科研业务费专项资金(30917011324);江苏省社会安全图像与视频理解重点实验室创新基金(30920140122007)


An online real-time multiple object tracker with multiple information integration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多目标跟踪算法在目标发生遮挡、目标快速运动时容易跟踪失败,而且无法从失败中恢复跟踪.针对该问题,首先利用目标的外观信息、运动信息和形状信息多种信息融合的目标特征表示,准确地计算目标间的相似性,使同一目标之间相似性距离尽量小,不同目标间的相似性距离尽量大;其次,基于判别能力强大的相关滤波器和卡尔曼预估器结合的单目标跟踪器可以在目标遮挡、快速运动中准确地跟踪目标.实验结果表明,多目标跟踪算法能够实时准确地跟踪被遮挡的目标和快速运动的目标.

    Abstract:

    The multiple object tracking (MOT) algorithm will fail when its target is occluded or in fast motion,furthermore,it cannot recover from drifting.To solve these problems,firstly,we employ integrated information to enhance the representation of objects,which includes the target's appearance,shape and motion information.By means of the integrated information,we can accurately calculate the similarity,which is as similar as possible between the same targets and as different as possible between the different targets.Secondly,we propose a novel real-time single object tracker based on the combination of the discriminative correlation filters (DCF) and the Kalman filters,which is robust to occlusion and fast motion.Extensive experiments have been done,and results show that the proposed MOT algorithm can accurately track the target in case of occlusion or fast motion in real time.

    参考文献
    相似文献
    引证文献
引用本文

刘忠耿,练智超,冯长驹.多种信息融合的实时在线多目标跟踪[J].南京信息工程大学学报(自然科学版),2017,9(6):656-660
LIU Zhonggeng, LIAN Zhichao, FENG Changju. An online real-time multiple object tracker with multiple information integration[J]. Journal of Nanjing University of Information Science & Technology, 2017,9(6):656-660

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-25
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司