多种信息融合的实时在线多目标跟踪
作者:
基金项目:

江苏省自然科学青年基金(BK20150784);中国博士后基金面上项目(2015M581800);中央高校基本科研业务费专项资金(30917011324);江苏省社会安全图像与视频理解重点实验室创新基金(30920140122007)


An online real-time multiple object tracker with multiple information integration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    多目标跟踪算法在目标发生遮挡、目标快速运动时容易跟踪失败,而且无法从失败中恢复跟踪.针对该问题,首先利用目标的外观信息、运动信息和形状信息多种信息融合的目标特征表示,准确地计算目标间的相似性,使同一目标之间相似性距离尽量小,不同目标间的相似性距离尽量大;其次,基于判别能力强大的相关滤波器和卡尔曼预估器结合的单目标跟踪器可以在目标遮挡、快速运动中准确地跟踪目标.实验结果表明,多目标跟踪算法能够实时准确地跟踪被遮挡的目标和快速运动的目标.

    Abstract:

    The multiple object tracking (MOT) algorithm will fail when its target is occluded or in fast motion,furthermore,it cannot recover from drifting.To solve these problems,firstly,we employ integrated information to enhance the representation of objects,which includes the target's appearance,shape and motion information.By means of the integrated information,we can accurately calculate the similarity,which is as similar as possible between the same targets and as different as possible between the different targets.Secondly,we propose a novel real-time single object tracker based on the combination of the discriminative correlation filters (DCF) and the Kalman filters,which is robust to occlusion and fast motion.Extensive experiments have been done,and results show that the proposed MOT algorithm can accurately track the target in case of occlusion or fast motion in real time.

    参考文献
    [1] Milan A,Leal-Taixe L,Reid I,et al.MOT16:A benchmark for multi-object tracking[J].arXiv e-print,2016,arXiv:1603.00831
    [2] Leal-Taixé L,Milan A,Reid I,et al.MOTChallenge 2015:Towards a benchmark for multi-target tracking[J].arXiv e-print,2015,arXiv:1504.01942
    [3] Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003:511-518
    [4] Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:886-893
    [5] Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE International Conference on Computer Vision and Pattern Recognition,2014:580-587
    [6] Girshick R.Fast R-CNN[C]//IEEE International Conference on Computer Vision,2015:1440-1448
    [7] Ren S P,He K M,Girshick R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):1137-1149
    [8] He K M,Zhang X Y,Ren S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916
    [9] Redmon J,Divvala S K,Girshick R,et al.You only look once:Unified,real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788
    [10] Redmon J,Farhadi A.YOLO9000:Better,faster,stronger[J].arXiv e-print,2016,arXiv:1612.08242
    [11] Pirsiavash H,Ramanan D,Fowlkes C C,et al.Globally-optimal greedy algorithms for tracking a variable number of objects[C]//IEEE Conference on Computer Vision and Pattern Recognition,2011:1201-1208
    [12] Leal-Taixé L,Pons-Moll G,Rosenhahn B,et al.Everybody needs somebody:Modeling social and grouping behavior on a linear programming multiple people tracker[C]//IEEE International Conference on Computer Vision,2011:120-127
    [13] Dicle C,Camps O I,Sznaier M,et al.The way they move:Tracking multiple targets with similar appearance[C]//IEEE International Conference on Computer Vision,2014:2304-2311
    [14] Fagot-Bouquet L,Audigier R,Dhome Y,et al.Improving multi-frame data association with sparse representations for robust near-online multi-object tracking[C]//European Conference on Computer Vision,2016:774-790
    [15] Kim C,Li F X,Ciptadi A,et al.Multiple hypothesis tracking revisited[C]//IEEE International Conference on Computer Vision,2015:4696-4704
    [16] Kieritz H,Becker S,Hubner W,et al.Online multi-person tracking using integral channel features[C]//IEEE International Conference on Advanced Video and Signal Based Surveillance,2016:122-130
    [17] Sadeghian A,Alahi A,Savarese S.Tracking the untrackable:Learning to track multiple cues with long-term dependencies[J].arXiv e-print,2017,arXiv:1701.01909
    [18] Tang S Y,Andres B,Andriluka M,et al.Multi-person tracking by multicut and deep matching[C]//European Conference on Computer Vision,2016:100-111
    [19] Jain V,Learned-Miller E.FDDB:A benchmark for face detection in unconstrained settings[R].Technical Report UM-CS-2010-009,University of Massachusetts,2010
    [20] Urtasun R,Lenz P,Geiger A.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition,2012:3354-3361
    [21] Henriques J F,Caseiro R,Martins P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596
    [22] Danelljan M,Hager G,Khan F S,et al.Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference,2014,DOI:10.5244/C.28.65
    [23] Liu R M,Li X L,Han L,et al.Track infrared point targets based on projection coefficient templates and non-linear correlation combined with Kalman prediction[J].Infrared Physics & Technology,2013,57(2):68-75
    [24] Wang M M,Liu Y,Huang Z Y.Large margin object tracking with circulant feature maps[J].arXiv e-print,2017,arXiv:1703.05020
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘忠耿,练智超,冯长驹.多种信息融合的实时在线多目标跟踪[J].南京信息工程大学学报(自然科学版),2017,9(6):656-660
LIU Zhonggeng, LIAN Zhichao, FENG Changju. An online real-time multiple object tracker with multiple information integration[J]. Journal of Nanjing University of Information Science & Technology, 2017,9(6):656-660

复制
分享
文章指标
  • 点击次数:1233
  • 下载次数: 3464
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-08-28
  • 在线发布日期: 2017-11-25

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司