基于C5.0算法的胃癌生存预测模型研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71473039)


Gastric cancer prediction model based on C5.0 classification algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    我国的胃癌发病率高,每年新增胃癌患者占全世界每年新增数量的42%,胃癌成为我国恶性肿瘤防控的重点.本文针对胃癌数据的特征,给出数据预处理和集成方法;采用C5.0分类算法,构建了胃癌生存预测模型,并首次采用美国癌症研究所的SEER数据库进行预测实验.实验结果表明:C5.0预测的精确度、特异性均高于BP-神经网络算法;胃癌患者的出生地点与最终的存活状态之间存在较强的相关性.该研究是数据挖掘技术在医学领域的一个实际应用,对胃癌的临床诊断具有一定的参考价值,可为医生制定合理的治疗和预防方案提供一定参考.

    Abstract:

    The incidence of gastric cancer is very high in China,and the number of new patients diagnosed with gastric cancer accounts for 42% of that of the whole world every year,so gastric cancer has become the focus of the prevention and control of malignant tumors in China.In this paper,the C5.0 classification algorithm is used to predict the survival rate of gastric cancer,and experiments are carried out using the SEER database of the American National Cancer Institute.The data preprocessing and data integration methods are given according to the unbalanced characteristics of gastric cancer record data.The prediction experimental results show that,the accuracy and specificity of C5.0 algorithm are high compared with BP-neural network method;and there is an obvious correlation between birth place and survival state of gastric cancer patients.This study is a practical application of data mining technology in the field of medicine,which has certain reference value for the clinical diagnosis of gastric cancer;it can provide reference for doctors to formulate reasonable treatment and prevention program.

    参考文献
    相似文献
    引证文献
引用本文

黄志刚,刘虹,刘娟,张岐山.基于C5.0算法的胃癌生存预测模型研究[J].南京信息工程大学学报(自然科学版),2017,9(4):406-410
HUANG Zhigang, LIU Hong, LIU Juan, ZHANG Qishan. Gastric cancer prediction model based on C5.0 classification algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2017,9(4):406-410

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-11
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司