微分系统的等价性及其应用研究综述
作者:
基金项目:

国家自然科学基金(61374010,11571301);江苏省自然科学基金(BK20161327);扬州大学教改基金(YZUJX2016-4A)


A survey of equivalence of differential systems and its applications
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    自Mironenko教授创建反射函数理论以来,人们采用该理论定义了微分系统间的新的等价关系,由此建立了复杂微分系统与简单微分系统、非自治微分系统与自治微分系统的等价性,应用它将复杂系统的几何性态的研究可转化为简单或自治系统的几何性态的研究.经过专家们的共同研究取得了若干极具理论和应用价值的好成果.

    Abstract:

    A relation of equivalence for the differential systems has been found since the establishment of reflecting theory by Professor Mironenko.Then the equivalence between complicated systems and simple systems,between nonautonomous differential systems and autonomous differential systems has been established,which can be employed to study the qualitative behavior of a complicated or nonautonomous differential system by discussing a simple or autonomous differential system.Many good results with theoretical and practical value have been obtained by researchers.

    参考文献
    [1] 张锦炎.常微分方程几何理论与分支问题[M].北京:北京大学出版社,1981 ZHANG Jinyan.Geometric theory and bifurcation problems of ordinary differential equations[M].Beijing:Peking University Press,1981
    [2] 叶彦谦.多项式微分系统定性理论[M].上海:上海科学出版社,1995 YE Yanqian.Qualitative theory of polynomial differential systems[M].Shanghai:Shanghai Science Press,1995
    [3] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论研究[M].北京:科学出版社,1985 ZHANG Zhifen,DING Tongren,HUANG Wenzao,et al.Research on qualitative theory of differential equations[M].Beijing:Science Press,1985
    [4] 廖晓昕.稳定性的理论、方法和应用[M].武汉:华中师范大学出版社,2001 LIAO Xiaoxin.Theory,methods and applications of stability[M].Wuhan:Huazhong Normal University Press,2001
    [5] 刘一戎,李继彬.平面向量场的若干经典问题[M].北京:科学出版社,2010 LIU Yirong,LI Jibin.Some classical problems of plane vector field[M].Beijing:Science Press,2010
    [6] 周正新.微分系统的反射函数理论及其应用[M].北京:机械工业出版社,2014 ZHOU Zhengxin.The theory of reflecting function of differential equations and applications[M].Beijing:China Machine Press,2014
    [7] Mironenko V I.Reflective function and periodic solution of the differential system[M].Minsk:Minsk University Press,1986
    [8] Mironenko V I.Analysis of reflective function and multivariate differential system[M].Gomel:Gomel University Press,2004
    [9] Mironenko V I.A method that allows one to determine the initial data of periodic solutions of differential systems and to compare the mappings for a period[J].Differentsialnye Uravneniya,1980,14(11):1985-1994
    [10] Mironenko V I.Reflecting function and classification of periodic differential systems[J].Differentsialnye Uravneniya,1984,20(9):1603-1610
    [11] Mironenko V I.Simple systems and periodic solutions of differential equations[J].Differentsialnye Uravneniya,1989,25(12):2109-2114
    [12] Mironenko V I.Method of reflective function for boundary problem[J].Differentsialnye Uravneniya,1996,32(8):774-779
    [13] Mironenko V I.A reflecting function of a family of functions[J].Differentsialnye Uravneniya,2000,36 (12):1794-1800
    [14] Mironenko V I.Time symmetry preserving perturbations of differential systems[J].Differentsialnye Uravneniya,2004,40(10):1395-1403
    [15] Mironenko V I,Mironenko V V.Time symmetry preserving perturbations of systems,and Poincare mapping [J].Differentsialnye Uravneniya,2008,44(10):1347-1352
    [16] Mironenko V I,Mironenko V V.How to construct equivalent differential systems[J].Applied Mathematics Letters,2009,22(3):1356-1359
    [17] Mironenko V V.Even integrals of differential systems[J].Dokl Nats Akad Nauk Belarusi,2003,47 (4):34-37
    [18] Verecovich P P.Nonautonomous second order quadric system equivalent to linear system[J].Differentsialnye Uravneniya,1998,34(12):2257-2259
    [19] Verecovich P P.Nonautonomous two-dimensional quadratic systems that are equivalent to linear systems[J].Differentsialnye Uravneniya,1998,34(10):1420-1422
    [20] Alisevich L A.On linear system with triangular reflective function[J].Differentsialnye Uravneniya,1989,25(3):1446-1449
    [21] Alisevich L A.Differential system with linear diagonal reflective function[J].Sci.Rep.Belarus.,1983,27:4-5
    [22] Musafirov E V.Simplicity of linear differential systems[J].Differentsialnye Uravneniya,2002,38(4):605-607
    [23] Musafirov E V.Differential systems,the mapping over period for which is represented by product of three exponential matrixes [J].Journal of Mathematical Analysis & Applications,2007,329(1):647-654
    [24] Maiorovskaya S V.The inverting function and boundedness of solutions of differential systems [J].Differentsialnye Uravneniya,2000,36(1):156-158
    [25] Maiorovskaya S V.Quadratic systems with a linear reflecting function [J].Differentsialnye Uravneniya,2009,45(2):271-273
    [26] Varenikova E V.Reflecting function and solutions of two-point boundary value problems for nonautonomous two-dimensional differential systems[J].Differentsialnye Uravneniya,2012,48(1):147-152<潢?????奝愠湂?奬?塳?剩敩猠敖愠牁挮桏?漠湴?瑥栠散?偮潳楴湲捵慣牴???????捦敩湲瑳整爭?晲潤捥畲猠?灯牬潹扮汯敭浩?潬映?獩潦浦敥?捥畮扴楩捡?搠楥晱晵敡牴敩湯瑮楳愠汥?獵祩獶瑡敬浥獮?戠祴?甠獡椠湧杩?慥?渠敥睱?浡整瑩桯潮搠孩?崠??摥瘠慳湥据敳獥?楯湦??楡晶晩敮牧攠湴捨敥猠??煭略愠瑲楥潦湬獥??ど????併???ど??ㄠ???献??????づ?????ぬ????払牲?孶??嵮??污眬愲猰栱′???????氱漱礭搱?丼???偛攲爸楝漠摂楥捬?獳潫汩畩琠楖漠湁献?潮映?慵?煤畲慡牴瑩楣挠?湩潦湦慥畲瑥潮湴潩浡潬甠獳?敳煴略慭瑳椠潷湩孴?崠?乱潵湡汬椠湲敥慦牬??湴慩汮祧猠楦獵???????ㄠ?????ど????づ?扴牳?孡??嵹??敕癲污楶湮????污漬礲搰?丳???倨攱愲爩猺漱渶″?????甴戼楢捲 ̄獛礲猹瑝攠浚獨?慵渠摚??戮敏汮?整煨略愠瑐楯潩湮獣?孲?崣??漳画爠湭慡汰?潩普??楡普晤攠牰敥湲瑩楯慤汩??煳畯慬瑵楴潩湯獮?ㄠ??????????????????ifferential systems[J].Communications on Pure & Applied Analysis,2007,6(2):541-547
    [30] Zhou Z X.The structure of reflecting function of polynomial differential systems[J].Nonlinear Analysis,2009,71(1):391-398
    [31] Zhou Z X.The reflective function represented by three exponential matrixes[J].Bulletin of the Korean Mathematical Society,2010,47(1):53-61
    [32] Zhou Z X.Research on the properties of some planar polynomial differential equations [J].Applied Mathematics & Computation,2012,218(9):5671-5681
    [33] Zhou Z X.Subharmonic solutions of Hill’s equation[J].Applied Mathematics & Computation,2015,253(C):17-22
    [34] Zhou Z X.On the first symmetry and periodicity of solutions of differential systems[J].Nonlinear Analysis:Real Word Applications,2014,17(1):64-70
    [35] Zhou Z X.A new method for research on the center-focus problem of differential systems[J].Abstract and Applied Analysis,2014(2):1-5
    [36] Zhou Z X.On the equivalence of differential systems[J].Math Anal Appl,2012,2(2):241-249
    [37] Zhou Z X,Tai R C,Wang F,et al.On the equivalence of differential equations [J].Journal of Applied Analysis & Computation,2014,4(1):103-114
    [38] Zhou Z X.On the first integral and equivalence of nonlinear differential equations[J].Applied Mathematics & Computation,2015,268(C):295-302
    [39] Zhou Z X.On the structure of the equivalent differential systems and their reflecting integrals[J].Bulletin Brazilian Mathematical Society,2016:1-9
    [40] Zhou Z X.On the equivalence and qualitative behavior of the rational differential equations[J].Filomat,Accepted
    [41] Zhou Z X,Ma
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周正新.微分系统的等价性及其应用研究综述[J].南京信息工程大学学报(自然科学版),2017,9(4):365-371
ZHOU Zhengxin. A survey of equivalence of differential systems and its applications[J]. Journal of Nanjing University of Information Science & Technology, 2017,9(4):365-371

复制
分享
文章指标
  • 点击次数:933
  • 下载次数: 2411
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-03-08
  • 在线发布日期: 2017-07-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司