三维插值方法在2 m温度评估中的应用
作者:
基金项目:

国家自然科学基金青年基金(41305091);中国气象局成都高原气象研究所科研基金(LPM201401)


Application of a 3D interpolation scheme for 2 meter temperature verification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    模式地形与实况站点地形高度间固有差异严重影响了2 m温度检验评估精度,传统二维插值方法仅满足预报要素与实况观测间经纬度二维空间上的一致性,而忽略了垂直方向的一致性问题,使得检验评估中预报与观测不在同一三维空间上进行检验,从而引起严重的评估误导.利用模式三维预报变量,结合近地面要素预报产品,建立新的近地面要素三维插值方法,以确保预报与观测在三维空间上保持一致性.利用2013年7月整月24 h预报产品与观测的对比分析发现,新插值方法有效地改进了由于地形误差引起的评估误导问题,在不同地形高度条件下均保持了较为一致的误差分布趋势,显示其评估结论不受地形因素影响,具有更好的实际应用价值.进一步关注新插值方法在复杂地形区不同模拟分辨率条件下的评估改进效果,采用GRAPES区域预报模式(GRAPES-MESO4.0)针对2012年7月个例,对青藏高原复杂地形区进行了不同分辨率(45、15、5和2 km)条件下的60 h模拟敏感分析,结果表明新插值方法在高分辨率条件下(2 km)依然显示出明显的改进优势.

    Abstract:

    The inherent difference between the modeled terrain and observed topography has seriously affected the 2 m temperature verification accuracy.The traditional 2D interpolation scheme can only ensure the consistency in two-dimensional space at latitude and longitude,while its neglect of the consistency at vertical direction produces error between forecast result and observation data.Using three-dimensional forecast variables,combined with near-surface elements of forecast products,an advanced 3D interpolation scheme is developed to ensure the consistency with the observed 3D space forecasting.The 24 h forecast products and observation data in July 2013 are used to compare and the results show that the proposed 3D interpolation scheme effectively solve the evaluation difference caused by the height bias between the modeled terrain and observed topography,which have maintained relatively consistent error distribution under different terrain height.And the evaluation results are not affected by terrain,which means it has good application value.To verify the proposed 3-D interpolation scheme for complex terrain with different resolutions,we carry out 60 h simulation sensitive tests for 2 m temperature estimation of Tibetan in July,2012 under resolution of 45 km,15 km,5 km,and 2 km,which show that the proposed method can improve estimation accuracy even under high resolution of 2 m.

    参考文献
    [1] 刘宇,陈泮勤,张稳,等.一种地面气温的空间插值方法及其误差分析[J].大气科学,2006,30(1):146-152 LIU Yu,CHEN Panqin,ZHANG Wen,et al.A spatial interpolation method for surface air temperature and its error analysis[J].Chinese Journal of Atmospheric Sciences,2006,30(1):146-152
    [2] 林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56 LIN Zhonghui,MO Xingguo,LI Hongxuan.et al.Comparison of three spatial interpolation methods for climate variables in China[J].Acta Geographica Sinica,2002,57(1):47-56
    [3] 李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265 LI Xin,CHENG Guodong,LU Ling.Comparison of spatial interpolation methods[J].Advance In Earth Sciences,2000,15(3):260-265
    [4] 王智,师庆东,常顺利,等.新疆地区平均气温空间插值方法研究[J].高原气象,2012,31(1):201-208 WANG Zhi,SHI Qingdong,CHANG Shunli,et al.Study on spatial interpolation method of mean air temperature in Xinjiang[J].Plateau Meteorology,2012,31(1):201-208
    [5] Engel C,Ebert E E.Gridded operational consensus forecasts of 2-m temperature over Australia[J].Weather and Forecasting,2012,27(2):301-322
    [6] Degaetano A T,Belcher B N.Spatial interpolation of daily maximum and minimum air temperature based on meteorological model analyses and independent observations[J].Journal of Applied Meteorology and Climatology,2007,46(11):1981-1992
    [7] Kann A,Wittmann C,Wang Y,et al.Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis[J].Monthly Weather Review,2009,137(10):3373-3387
    [8] 梁丰,王迎春.用中尺度非静力模式制作北京气温和风预报[J].气象,2000,26(6):33-39 LIANG Feng,WANG Yingchun.The forecast of 2-m temperature and 10-m wind with nonhydrostatic mesoscale numerical forecasting system[J].Meteorological Monthly,2000,26(6):33-39
    [9] 王思维,刘勇,朱超洪,等.青海省逐日地面气温数据不同插值方法的对比[J].高原气象,2011,30(6):1640-1646 WANG Siwei,LIU Yong,ZHU Chaohong.et al.Contrast on different spatial interpolation methods of daily surface temperature data in terrain complex area,Qinghai province[J].Plateau Meteorology,2011,30(6):1640-1646
    [10] Pitman A J,Perkins S E.Global and regional comparison of daily 2-m and 1000-hPa maximum and minimum temperatures in three global reanalyses[J].Journal of Climate,2009,22(17):4467-4681
    [11] Patarčić M,Branković Č.Skill of 2-m temperature seasonal forecasts over Europe in ECMWF and RegCM models[J].Monthly Weather Review,2011,140(4):1326-1346
    [12] 熊秋芬.GRAPES_Meso模式的降水格点检验和站点检验分析[J].气象,2011,37(2):185-193 XIONG Qiufen.Verification of GRAPES_Meso precipitation forecasts based on fine-mesh and station datasets[J].Meteorological Monthly,2011,37(2):185-193
    [13] Uboldi F,Lussana C.Representativity of a mesonet temperature observations with respect to model fields[R].Poster Presentation at 13th EMS Annual Meeting & 11th Conference on Applications of Meteorology (ECAM),2013
    [14] Lussana C,Uboldi F,Salvati M R.A spatial consistency test for surface observations from mesoscale meteorological networks[J].Quarterly Journal of the Royal Meteorological Society,2010,136(649):1075-1088
    [15] 李莉,李应林,田华,等.T213全球集合预报系统性误差订正研究[J].气象,2011,37(1):31-38 LI Li,LI Yinglin,TIAN Hua,et al.Study of bias-correction in T213 global ensemble forecast[J].Meteorological Monthly,2011,37(1):31-38
    [16] 李莉,朱跃建.T213降水预报订正系统的建立与研究[J].应用气象学报,2006,17(增刊1):130-133 LI Li,ZHU Yuejian.The establishment and research of T213 precipitation calibration system[J].Journal of Applied Meteorological Science,2006,17(sup1):130-133
    [17] Fan Y,Dool H V D.Bias correction and forecast skill of NCEP GFS ensemble week-1 and week-2 precipitation,2-m surface air temperature,and soil moisture forecasts[J].Weather & Forecasting,2011,26(3):355-370
    [18] Cui B,Toth Z,Zhu Y J,et al.The trade-off in bias correction between using the latest analysis/modeling system with a short,an older system with a long archive[C]//Proceedings of the First Thorpex International Science Symposium,World Meteorological Organization,2006:281-284
    [19] North G R,Wang J,Genton M G.Correlation models for temperature fields[J].Journal of Climate,2011,24:5850-5862
    [20] 赵声蓉,赵翠光,赵瑞霞,等.我国精细化客观气象要素预报进展[J].气象科技进展,2012,2(5):12-21 ZHAO Shengrong,ZHAO Cuiguang,ZHAO Ruixiao,et al.The development of objective meteorological element forecast in China[J].Advances in Meteorological Science and Technology,2012,2(5):12-21
    [21] 刘还珠,赵声蓉,陆志善,等.国家气象中心气象要素的客观预报:MOS系统[J].应用气象学报,2004,15(2):181-181 LIU Huangzhu,ZHAO Shengrong,LU Zhishan,et al.Objective element forecasts at NMC-A MOS system[J].Journal of Applied Meteorological Science,2004,15(2):181-181
    [22] 赵声蓉.多模式温度集成预报[J].应用气象学报,2006,17(1):52-58 ZHAO Shengrong.Multi-model consensus forecast for temperature[J].Journal of Applied Meteorological Science,2006,17(1):52-58
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵滨,李子良,张博.三维插值方法在2 m温度评估中的应用[J].南京信息工程大学学报(自然科学版),2016,8(4):343-355
ZHAO Bin, LI Ziliang, ZHANG Bo. Application of a 3D interpolation scheme for 2 meter temperature verification[J]. Journal of Nanjing University of Information Science & Technology, 2016,8(4):343-355

复制
分享
文章指标
  • 点击次数:713
  • 下载次数: 2291
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-05-08
  • 在线发布日期: 2016-08-23

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司