基于判别式字典的正则化稀疏表示人脸识别算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61473334);江苏省高校优势学科建设工程项目


Face recognition algorithm based on discriminative dictionary learning and regularized robust coding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了克服非约束性(光照、表情变化)条件下会大大降低人脸识别率的缺陷,提出一种基于Fisher判别准则的正则化稀疏表示人脸识别算法.首先将人脸图像经过Gabor滤波器滤波得到Gabor幅值图像,提取其统一化的局部二进制直方图,然后利用Fisher判别准则学习得到新的字典,最后通过正则化的稀疏表示判断测试图像所属类.利用AR数据库的数据进行实验的结果表明,与SRC、FDDL、RSC识别算法相比,本文算法在非约束性条件下具有最佳的识别率.

    Abstract:

    To address the reduced face recognition accuracy in uncontrolled conditions such as the change of illumination,countenance or posture,a face recognition algorithm was proposed based on discriminative dictionary learning and regularized robust coding.Firstly,a face image is filtered by the Gabor filter to obtain the Gabor amplitude images,and the uniform local binary histogram is extracted.Then the Fisher criterion is used to gain a new discriminative dictionary,finally the regularized sparse representation is employed to test and classify the image.The experimental results based on AR face database show that the proposed algorithm has the highest face recognition rate in the existing uncontrolled environments,compared with algorithms such as Sparse Representation based Classifier,Fisher Discrimination Dictionary Learning,and Robust Sparse Coding for face recognition.

    参考文献
    相似文献
    引证文献
引用本文

陆振宇,张铃华,何珏杉.基于判别式字典的正则化稀疏表示人脸识别算法[J].南京信息工程大学学报(自然科学版),2015,7(6):519-524
LU Zhenyu, ZHANG Linghua, HE Jueshan. Face recognition algorithm based on discriminative dictionary learning and regularized robust coding[J]. Journal of Nanjing University of Information Science & Technology, 2015,7(6):519-524

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-09-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-12-23
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司