金融领域的随机建模与基于软件R的Monte Carlo模拟(4):随机微分方程模型
作者:
基金项目:

国家自然科学基金(11171056,11171081)


Stochastic Modelling in Financeand Monte Carlo Simulations with R Part D:Stochastic Differential Equation Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    参考文献
    [1] 毛学荣, 李晓月.金融领域的随机建模与基于软件R的Monte Carlo模拟(2):Cox-Ross-Rubinstein模型.南京信息工程大学学报:自然科学版, 2015, 7(2):125-132 MAO Xuerong, LI Xiaoyue.Stochastic modelling in finance and Monte Carlo simulations with R.Part B:Cox-Ross-Rubinstein model.Journal of Nanjing University of Information Science & Technology:Natural Science Edition, 2015, 7(2):125-132
    [2] 毛学荣, 李晓月.金融领域的随机建模与基于软件R的Monte Carlo模拟(3):随机对数线性模型.南京信息工程大学学报:自然科学版, 2015, 7(3):214-220 MAO Xuerong, LI Xiaoyue.Stochastic modelling in finance and Monte Carlo simulations with R.Part C:Stochastic log-linear model.Journal of Nanjing University of Information Science & Technology:Natural Science Edition, 2015, 7(3):214-220
    [3] Cox J C, Ross S A, Rubinstein M.Option pricing:A simplified approach.Journal of Financial Economics, 1979, 7(3):229-263
    [4] Korn R, Korn E.Option pricing and portfolio optimization:Modern methods of financial mathematics.Providence, RI:American Mathematical Society, 2001
    [5] Black F, Scholes M.The pricing of options and corporate liabilities.The Journal of Political Economy, 1973, 81(3):637-654
    [6] Merton R C.Theory of rational option pricing.The Bell Journal of Economics and Management Science, 1973, 4(1):141-183
    [7] Samuelson P A.Rational theory of warrant pricing.Industrial Management Review, 1965, 6(2):13-39
    [8] Cox J C, Ingersoll J E, Ross S A.A theory of the term structure of interest rates.Econometrica, 1985, 53(2):385-407
    [9] Etheridge A.A course in financial calculus.Cambridge:Cambridge University Press, 2002
    [10] Higham D J.An introduction to financial option valuation[M].Cambridge:Cambridge University Press, 2004
    [11] Tretyakov M V.Introductory course on financial mathematics[M].London:Imperial College Press, 2013
    [12] Karatzas I, Shreve S E.Brownian motion and stochastic calculus[M].New York:Springer-Verlag, 1988
    [13] Mao X R.Stochastic differential equations and applications[M].2nd Ed.Chichester:Horwood Publishing, 2007
    [14] Mao X R, Yuan C G.Stochastic differential equations with Markovian switching[M].London:Imperial College Press, 2006
    [15] Lewis A L.Option valuation under stochastic volatility:With mathematica code[M].Newport Beach, California:Finance Press, 2000
    [16] Bernard P, Fleury G.Convergence of numerical schemes for stochastic differential equations[J].Monte Carlo Methods and Applications, 2001, 7(1/2):35-44
    [17] Gyöngy I, Krylov N.Existence of strong solutions for Itô's stochastic equations via approximations[J].Probability Theory Related Fields, 1996, 105(2):143-158
    [18] Gyöngy I.A note on Euler's approximations[J].Potential Analysis, 1998, 8(3):205-216
    [19] Kloeden P E, Platen E.Numerical solution of stochastic differential equations[M].Berlin:Springer-Verlag, 1999
    [20] Higham D J, Mao X R, Stuart A M.Strong convergence of Euler-type methods for nonlinear stochastic differential equations[J].SIAM Journal on Numerical Analysis, 2002, 40(3):1041-1063
    [21] Mao X R.Stochastic differential equations and applications[M].Chichester, UK:Horwood Publishing, 1997
    [22] Khasminskii R.Stochastic stability of differential equations[M].Alphen:Sijtjoff and Noordhoff, 1980
    [23] Mao X R.Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions[J].Applied Mathematics and Computation, 2011, 217(12):5512-5524
    [24] Song M H, Hu L J, Mao X R, et al.Khasminskii-type theorems for stochastic functional differential equations[J].Discrete and Continuous Dynamical Systems- Series B, 2013, 18(6):1697-1714
    [25] Milstein G N, Tretyakov M V.Stochastic numerics for mathematical physics[M].Berlin:Springer-Verlag, 2004
    [26] Baduraliya C, Mao X R.The Euler-Maruyama approximation for the asset price in the mean-reverting-theta stochastic volatility model[J].Computers & Mathematics with Applications, 2012, 64(7):2209-2223
    [27] Mao X R, Szpruch L.Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients[J].Journal of Computational and Applied Mathematics, 2013, 238(1):14-28
    [28] Higham D J, Mao X R, Stuart A M.Exponential mean-square stability of numerical solutions to stochastic differential equations[J].LMS Journal of Computation and Mathematics, 2003, 6:297-313
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毛学荣,李晓月.金融领域的随机建模与基于软件R的Monte Carlo模拟(4):随机微分方程模型[J].南京信息工程大学学报(自然科学版),2015,7(4):313-322
MAO Xuerong, LI Xiaoyue. Stochastic Modelling in Financeand Monte Carlo Simulations with R Part D:Stochastic Differential Equation Model[J]. Journal of Nanjing University of Information Science & Technology, 2015,7(4):313-322

复制
分享
文章指标
  • 点击次数:1122
  • 下载次数: 2418
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-09-13
  • 在线发布日期: 2015-08-18

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司