输出非线性方程误差类系统递推最小二乘辨识方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61273194);江苏省自然科学基金(BK2012549);高等学校学科创新引智"111计划"(B12018)


Recursive least squares identification methods for output nonlinear equation-error type systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着控制技术的发展,控制对象的规模越来越大,使得辨识算法的计算量也越来越大.对于结构复杂的非线性系统,特别是包含未知参数乘积的非线性系统,使得过参数化辨识方法的参数数目大幅度增加,辨识算法的计算量也急剧增加,因此探索计算量小的参数估计方法势在必行.针对输出非线性方程误差类系统,讨论了基于过参数化模型的递推最小二乘类辨识方法;为减小过参数化辨识算法的计算量和提高辨识精度,分别利用分解技术和数据滤波技术,研究和提出了基于模型分解的递推最小二乘辨识方法和基于数据滤波的递推最小二乘辨识方法.最后给出了几个典型辨识算法的计算量、计算步骤、流程图.

    Abstract:

    With the development of control technology,the scales of the control systems become larger and larger,so does the computational load of the identification algorithms.For nonlinear systems with complex structures,especially for the nonlinear systems that contain the products of the unknown parameters of the nonlinear part and linear part,the sizes of the involved matrices in the over-parameterization model based least squares methods greatly increase,this makes the computational amount of the identification algorithms increase dramatically.Therefore,it is necessary to explore new parameter estimation methods with less computation.For output nonlinear equation-error type systems,this paper discusses the over-parameterization model based recursive least squares type identification algorithms; in order to reduce computational loads and improve the identification accuracy,this paper uses the decomposition technique and the filtering technique and presents the model decomposition based recursive least squares identification methods and the filtering based recursive least squares identification methods.Finally,the computational efficiency,the computational steps and the flowcharts of several typical identification algorithms are discussed.

    参考文献
    相似文献
    引证文献
引用本文

丁锋,陈启佳.输出非线性方程误差类系统递推最小二乘辨识方法[J].南京信息工程大学学报(自然科学版),2015,7(3):193-213
DING Feng, CHEN Qijia. Recursive least squares identification methods for output nonlinear equation-error type systems[J]. Journal of Nanjing University of Information Science & Technology, 2015,7(3):193-213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-06-26
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司