输入非线性方程误差系统的多新息辨识方法
作者:
基金项目:

国家自然科学基金(61273194);江苏省自然科学基金(BK2012549);高等学校学科创新引智"111计划"(B12018)


Multi-innovation identification methods for input nonlinear equation-error systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    参考文献
    [1] 丁锋.系统辨识新论[M].北京:科学出版社,2013 DING Feng.System identification:New theory and methods[M].Beijing:Science Press,2013
    [2] 丁锋.系统辨识:辨识方法性能分析[M].北京:科学出版社,2014 DING Feng.System identification:Performance analysis for identification methods[M].Beijing:Science Press,2014
    [3] 丁锋,汪菲菲.多元系统耦合多新息随机梯度类辨识方法[J].南京信息工程大学学报:自然科学版,2014,6(1):1-16 DING Feng,WANG Feifei.Coupled multi-innovation stochastic gradient type identification methods for multivariate systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2014,6(1):1-16
    [4] 丁锋,汪菲菲,汪学海.多元伪线性回归系统部分耦合多新息随机梯度类辨识方法[J].南京信息工程大学学报:自然科学版,2014,6(2):97-112 DING Feng,WANG Feifei,WANG Xuehai.Partially Coupled multi-innovation stochastic gradient type identification methods for multivariate pseudo-linear regressive systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2014,6(2):97-112
    [5] 丁锋,汪菲菲,汪学海.类多变量输出误差系统的耦合多新息辨识方法[J].南京信息工程大学学报:自然科学版,2014,6(3):193-210 DING Feng,WANG Feifei,WANG Xuehai.Coupled multi-innovation identification methods for multivariable output-error-like systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2014,6(3):193-210
    [6] 丁锋,汪菲菲,汪学海.多变量方程误差类系统的部分耦合迭代辨识方法[J].南京信息工程大学学报:自然科学版,2014,6(4):289-305 DING Feng,WANG Feifei,WANG Xuehai.Partially coupled iterative identification methods for multivariable equation error type systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2014,6(4):289-305
    [7] 丁锋,王艳娇.类多变量方程误差类系统的递阶多新息辨识方法[J].南京信息工程大学学报:自然科学版,2014,6(5):385-404 DING Feng,WANG Yanjiao.Hierarchical multi-innovation identification methods for multivariable equation-error-like type systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2014,6(5):385-404
    [8] 丁锋,马兴云.规范状态空间系统辨识方法[J].南京信息工程大学学报:自然科学版,2014,6(6):481-504 DING Feng,MA Xingyun.Identification methods for canonical state space systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2014,6(6):481-504
    [9] 丁锋,毛亚文.输入非线性方程误差自回归系统的多新息辨识方法[J].南京信息工程大学学报:自然科学版,2015,7(1):1-23 DING Feng,MAO Yawen.Multi-innovation identification methods for input nonlinear equation-error autoregressive systems[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2015,7(1):1-23
    [10] Vörös J.Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities[J].IEEE Transactions on Automatic Control,1999,44(11):2145-2149
    [11] Vörös J.Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics[J].IEEE Transactions on Automatic Control,2002,47(1):184-188
    [12] Vörös J.Identification of Hammerstein systems with time-varying piecewise-linear characteristics[J].IEEE Transaction on Circuit Systems II,2005,52(12):865-869
    [13] Ding F,Chen T.Performance analysis of multi-innovation gradient type identification methods[J].Automatica,2007,43(1):1-14
    [14] Ding F,Liu X P,Liu G.Multi-innovation least squares identification for system modeling[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2010,40(3):767-778
    [15] Ding F.Several multi-innovation identification methods[J].Digital Signal Processing,2010,20(4):1027-1039
    [16] Ding F,Liu G,Liu X P.Parameter estimation with scarce measurements[J].Automatica,2011,47(8):1646-1655
    [17] Ding F.Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling[J].Applied Mathematical Modelling,2013,37(4):1694-1704
    [18] Ding F,Liu X P,Liu G.Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises[J].Signal Processing,2009,89(10):1883-1890
    [19] Ding F,Chen H B,Li M.Multi-innovation least squares identification methods based on the auxiliary model for MISO systems[J].Applied Mathematics and Computation,2007,187(2):658-668
    [20] Zhang J B,Ding F,Shi Y.Self-tuning control based on multi-innovation stochastic gradient parameter estimation[J].Systems & Control Letters,2009,58(1):69-75
    [21] Han L L,Ding F.Multi-innovation stochastic gradient algorithms for multi-input multi-output systems[J].Digital Signal Processing,2009,19(4):545-554
    [22] Wang D Q,Ding F.Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems[J].Digital Signal Processing,2010,20(3):750-762
    [23] Liu Y J,Xiao Y S,Zhao X L.Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model[J].Applied Mathematics and Computation,2009,215(4):1477-1483
    [24] Liu Y J,Yu L,Ding F.Multi-innovation extended stochastic gradient algorithm and its performance analysis[J].Circuits,Systems and Signal Processing,2010,29(4):649-667
    [25] Han L L,Ding F.Identification for multirate multi-input systems using the multi-innovation identification theory[J].Computers and Mathematics with Applications,2009,57(9):1438-1449
    [26] Xie L,Yang H Z,Ding F.Modeling and identification for non-uniformly periodically sampled-data systems[J].IET Control Theory and Applications,2010,4(5):784-794
    [27] Wang D Q,Chu Y Y,Ding F.Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems[J].Computers and Mathematics with Applications,2010,59(9):3092-3098
    [28] Chen J,Ding F.Least squares and stochastic gradient parameter estimation for multivariable nonlinear Box-Jenkins models based on the auxiliary model and multi-innovation identification theory[J].Engineering Computations,2012,29(8):907-921.
    [29] Chen H B,Xiao Y S,Ding F.Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle[J].Applied Mathematics and Computation,2014,247:1202-1210.
    [30] 丁锋,谢新民,方崇智.时变系统辨识的多新息方法[J].自动化学报,1996,22(1):85-91 DING Feng,XIE Xinmin,FANG Chongzhi.Multi-innovation identification methods for time-varying systems[J].Acta Automatica Sinica,1996,22(1):85-91
    [31] 丁锋,萧德云,丁韬.多新息随机梯度辨识方法[J].控制理论与应用,2003,20(6):870-874 DING Feng,XIAO Deyun,DING Tao.Multi-innovation stochastic gradient identification methods[J].Control Theory and Application,2003,20(6):870-874
    [32] 王冬青,丁锋.Box-Jenkins模型的基于辅助模型的多新息广义增广随机梯度算法[J].控制与决策,2008,23(9):999-1003,1010 WANG Dongqing,DING Feng.Auxiliary model based multi-innovation generalized extended stochastic gradient algorithms for Box-Jenkins models[J].Control and Decision,2008,23(9):999-1003,1010
    [33] 丁洁,谢莉,丁锋.非均匀采样系统多新息随机梯度辨识性能分析[J].控制与决策,2011,26(9):1338-1342. DING Jie,XIE Li,DING Feng.Performance analysis of multi-innovation stochastic gradient identification for non-uniformly sampled systems[J].Control and Decision,2011,26(9):1338-1342.
    [34] Mao Y W,Ding F.Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique[J].Nonlinear Dynamics,2015,79(3):1745-1755.
    [35] Ding F,Chen T.Identification of Hammerstein nonlinear ARMAX systems[J].Automatica,2005,41(9):1479-1489
    [36] Ding F,Shi Y,Chen T.Gradient-based identification methods for Hammerstein nonlinear ARMAX models[J].Nonlinear Dynamics,2006,45(1-2):31-43
    [37] Ding F,Shi Y,Chen T.Auxiliary model based least-squares identification methods for Hammerstein output-error systems[J].Systems and Control Letters,2007,56(5):373-380
    [38] 范伟,丁锋.Hammerstein非线性系统参数估计分离的三种方法[J].控制科学与工程,2008,8(6):1586-1589. FAN Wei,DING Feng.Three methods of separating parameters for Hammerstein nonlinear systems[J].Science Technology and Engineering,2008,8(6):1586-1589
    [39] Ding F,Duan H H.Two-stage parameter estimation algorithms for Box-Jenkins systems[J].IET Signal Processing,2013,7(2):176-184
    [40] Chen H B,Ding F.Hierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systems[J].Circuit,System and Signal Processing,2015,34(1):61-75.
    [41] Chen H B,Ding F,Xiao Y S.Decomposition based parameter estimation algorithm for input nonlinear systems using the key term separation technique[J].Nonlinear Dynamics,2015,79(3):2027-2035.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁锋,陈慧波.输入非线性方程误差系统的多新息辨识方法[J].南京信息工程大学学报(自然科学版),2015,7(2):97-124
DING Feng, CHEN Huibo. Multi-innovation identification methods for input nonlinear equation-error systems[J]. Journal of Nanjing University of Information Science & Technology, 2015,7(2):97-124

复制
分享
文章指标
  • 点击次数:1001
  • 下载次数: 2310
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-04-02
  • 在线发布日期: 2015-04-23

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司