奇异非线性二阶诺伊曼边值问题恰有5个正解的条件
作者:
基金项目:

武汉科技大学冶金工业过程系统科学湖北省重点实验室开放基金(C201005)


Condition for exactly five positive solutions to a second-order Neumann boundary value problem with singular nonlinearity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    主要研究奇异非线性二阶诺伊曼边值问题的正解个数.应用比较原理、最大值原理和上界方法得出了在一定条件下,该问题恰好有5个正解的结果.

    Abstract:

    In this paper,the number of solutions to a second-order Neumann boundary value problem with singular nonlinearity are concerned.Comparison theorem,maximum principle and upper solutions method are employed to come to a conclusion that,in some condition,the number of solutions for this problem is exactly five.

    参考文献
    [1] Canada A, Montero J A, Villegas S.Lyapunov-type inequalities and Neumann boundary value problems at resonace[J].Math Ineq Appl, 2005, 8:459-475
    [2] Wang H, Li Y.Neumann boundary value problems for second-order ordinary differential equations across resonace[J].SIAM J Control Optim, 1995, 33:1312-1325
    [3] Sun J, Li W.Multiple positive solutions to a second-order Neumann boundary value problems[J].Appl Math Comput, 2003, 146(1):187-194
    [4] Chu J, Sun Y, Chen H.Positive solutions of Neumann problems with singularities[J].J Math Anal Appl, 2007, 67:2815-2828
    [5] Sudhasree G, Joseph A I.Exact multiplicity of positive solutions in semipositone problems with concave-convex type nonliearities[J].Electronic J Qual Theory Diff Equat, 2001, 4:1-9
    [6] Shi J.Semilinear Neumann boundary value problems on a rectangle[J].Trans Amer Math Soc, 2002, 354(8):3117-3154
    [7] Ortega R, Zhang M.Optimal bounds for bifurcation values of a superlinear periodic problem[J].Proc Royal Soc Edinburgh:Section of Edinburgh, 2005, 135(1):119-132
    [8] Chen H, Li Y.Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities[J].Proc Amer Math Soc, 2007, 135(12):3925-3932
    [9] Feng Y Q, Li G J.Exact three positive solutions to a second-roder Neumann boundary value problem with singular nonlinearity[J].The Arabian Journal for Science and Engineering, 2010, 35(2D):189-195
    [10] Amann H.Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J].SIAM Review, 1976, 18(4):620-709
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡令雄,李德宜,任帅.奇异非线性二阶诺伊曼边值问题恰有5个正解的条件[J].南京信息工程大学学报(自然科学版),2013,5(6):573-576
HU Lingxiong, LI Deyi, REN Shuai. Condition for exactly five positive solutions to a second-order Neumann boundary value problem with singular nonlinearity[J]. Journal of Nanjing University of Information Science & Technology, 2013,5(6):573-576

复制
分享
文章指标
  • 点击次数:947
  • 下载次数: 2607
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-07-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司