结合潮位信息的红树林遥感识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学青年基金(41201461);南京信息工程大学大学生实践创新训练计划(201310300143);江苏省高校优势学科建设工程(PADD)项目


Remote sensing identification of mangrove forest combined tidal level information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红树林的滨海湿地生境使得它同陆生植被、水体-陆生植被混合像元难以区分,且红树林在遥感图像上的空间分布还随着潮位的变化而变化,因此基于通常采用的单一潮位遥感图像无法精确提取红树林空间信息.基于高潮位和低潮位TM遥感图像,尝试利用红树林的潮位周期性变化和滨海湿地特征来精确提取红树林空间分布信息.研究结果表明:基于缨帽变换和潮差信息提取的WIL+WIH、GVIL和GVIL-GVIH(WI、GVI分别为Wetness Index、Greenness Vegetation Index,下标L和H分别表示低潮位和高潮位)等指数能使红树林与其他地物之间具有很好的可分性;进一步采用最大似然法对红树林进行分类识别,通过结合潮位信息能精确提取红树林,其中制图精度和用户精度分别为94.57%、98.8%.

    Abstract:

    It is difficult to distinguish mangrove from terrestrial vegetation or the mixed pixels of water and terrestrial vegetation due to the coastal wetland habit of mangrove.Moreover,the tide change also causes the change in spatial distribution characteristics of mangrove in remotely sensed imagery.Therefore,it is very difficult to precisely extract the spatial mangrove information by means of the remote sensing imagery of single tide,which was usually adopted yet.Nevertheless the mangrove resides in coastal wetland,where the tide level varies periodically.In order to solve the problem,it was attempted to make good use of the unique habit characteristics of mangrove based on Landsat TM remote sensing images of both high tide level and low tide level.The analysis results show that the separability between mangrove and the other objects are very good through WIL+WIH,GVIL and GVIL-GVIH,which are developed by the tidal range information and tasseled cap transformation.Note that WI and GVI stand for wetness index and greenness vegetation index,respectively;while the subscripted L and H stand for low tide and high tide,respectively.The maximum likelihood classifier,an unsupervised classification method,was used to identify mangrove.The classification features based on the tidal range information,greenness index and wetness index can accurately map mangrove forest,and the producer's accuracy and user's accuracy of mangrove are 94.57% and 98.8%,respectively.

    参考文献
    相似文献
    引证文献
引用本文

张雪红,周杰,魏瑗瑗,朱晔.结合潮位信息的红树林遥感识别[J].南京信息工程大学学报(自然科学版),2013,5(6):501-507
ZHANG Xuehong, ZHOU Jie, WEI Yuanyuan, ZHU Ye. Remote sensing identification of mangrove forest combined tidal level information[J]. Journal of Nanjing University of Information Science & Technology, 2013,5(6):501-507

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-11-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司