WENO格式与虚拟单元浸入边界法在笛卡尔网格中的应用
作者:
基金项目:

国家自然科学基金(11002071)


Application of WENO scheme with ghost cell immersed boundary method on Cartesian mesh
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    高精度有限差分WENO格式在结构网格上处理具有复杂几何外形绕流问题时较困难,而虚拟单元浸入边界法却是一种较新颖且对网格的要求较低的方法,适用于复杂几何外形边界的处理.为此,在笛卡尔网格上采用WENO格式以求解Euler守恒律方程,试图将两者有效结合起来,希望能在笛卡尔网格上处理具有复杂几何外形的物体绕流问题.最后,几个经典数值算例的结果验证了该方法的有效性.

    Abstract:

    Finite difference WENO scheme of high order accuracy scheme has difficulty in dealing with the problem which has the flow over a complex geometry on structured mesh.While the ghost cell immersed boundary method is a novel and general technique for handling a flow with complex geometry without any special needs of computing mesh.We use the WENO scheme in conjunction with the ghost cell immersed boundary method to solve the above-mentioned problem on Cartesian mesh.Finally,the results of some classic numerical tests are given to verify the effectiveness of this proposed method.

    参考文献
    [1] Harten A,Osher S.Uniformly high-order accurate non-oscillatory schemes.[J].SIAM J Numer Anal,1987,24(2):279-309
    [2] Liu X D,Osher S,Chan T.Weighted essentially non-oscillatory shock-capturing schemes[J].J Comp Phys,1994,115(1):200-212
    [3] Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].J Comp Phys,1996,126(1):202-228
    [4] Shu C W.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws.NASA ICASE Report,1997:97-65
    [5] Balsara D S,Shu CW.Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J].J Comp Phys,2000,160(2):405-452
    [6] Dadone A.Symmetry technique for the numerical solution of the 2D Euler equations at impermeable boundaries[J].Int J Numer Meth Fluids,1998,28 (7):1093-1108
    [7] Dadone A,Grossman B.Surface boundary conditions for the numerical solution of the Euler equations in three dimensions[J].Lect Notes Phys,1995,453:188-194
    [8] Dadone A,Grossman B.Ghost-cell method with far field coarsening and mesh adaptation for Cartesian grids[J].Computers & Fluids,2006 35 (7):676-687
    [9] Wang Z J,Sun Y Z.Curvature-based wall boundary condition for the Euler conditions on unstructured grids[J].AIAA Journal,2003,41 (1):27-33
    [10] Forrer H,Jeltsch R.A higher-order boundary treatment for Cartesian-grid methods[J].J Comput Phy,1998,140 (2):259-277
    [11] Forrer H,Berger M.Flow simulations on Cartesian grids involving complex moving geometries//Proc 7th Int Conf Hyp Problems,Zurich,Switz,1998
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李自启,朱君. WENO格式与虚拟单元浸入边界法在笛卡尔网格中的应用[J].南京信息工程大学学报(自然科学版),2013,5(1):86-90
LI Ziqi, ZHU Jun. Application of WENO scheme with ghost cell immersed boundary method on Cartesian mesh[J]. Journal of Nanjing University of Information Science & Technology, 2013,5(1):86-90

复制
分享
文章指标
  • 点击次数:1064
  • 下载次数: 2916
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-09-10

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司