基于小波提升算法的脑电节律提取
作者:
基金项目:

广东省科技计划项目(2009B08-0701007)


EEG extraction based on wavelet lifting scheme
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    小波变换在信号处理中有着广泛的应用,能同时分析时域和频域方面的信息,但是传统的小波变换依赖于傅立叶变换,有大量的卷积运算,运算速度较慢.该文讨论了第二代小波变换的原理,并采用它来处理脑电信号.提升算法作为构造第二代小波的关键技术,通过预测确定高频信息,更新后得到正确的低频信息,它不依赖于傅立叶变换,大大提高了运算速度.通过分析提升算法的基本原理,用第二代小波变换实现了对脑电信号的节律(δ、θ、α、β)提取,并得到了令人满意的效果.

    Abstract:

    Wavelet transform is widely applied in signal processing,which can analyze time domain or frequency domain information.But the traditional wavelet transform depends on Fourier transform,and its realization is based on a large amount of convolution computation,leading to the low operation speed.This paper discusses the principles of second generation wavelet transform,and applies it to process the electroencephalo-graph (EEG).Lifting scheme is the key technique to construct the second generation wavelet transform.High-frequency information is determined by predicting,and the correct low-frequency information is obtained through update.Lifting scheme does not depend on the Fourier transform,thus greatly improves the speed of operation.By analyzing the basic principles of lifting scheme,we extracted the four rhythms of EEG through second generation wavelet transform,and got satisfactory results.

    参考文献
    [1] 王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006 WANG Dakai,PENG Jinye.Wavelet analysis and its application in signal processing[M].Beijing:Publishing House of Electronics Industry,2006
    [2] 樊启斌.小波分析[M].武汉:武汉大学出版社,2008 FAN Qibin.Wavelet analysis[M].Wuhan:Wuhan University Press,2008
    [3] 邵晨曦,卢继军,周颢.基于小波变换的脑电图癫痫波形检测[J].生物医学工程学杂志,2002,19(2):259-263 SHAO Chenxi,LU Jijun,ZHOU Hao.Detection of epileptic waves in EEG based on wavelet transform[J].Journal of Biomedical Engineering,2002,19(2):259-263
    [4] Adeli H,Zhou Z Q,Dadmehr N.Analysis of EEG records in an epileptic patient using wavelet transform[J].Neurosci Methods,2003,123(1):69-87
    [5] Oropesa E,Cycon H L,Jobert M.Sleep stage classification using wavelet transform and neural network.ICSI Technical Report,TR-99-008,1999
    [6] 宦飞,郑崇勋,刘峰,等.利用小波级数检测睡眠EEG中的K-复合波[J].北京生物医学工程,2000,19(1):1-5 HUAN Fei,ZHENG Chongxun,LIU Feng,et al.Detecting of K-complex from sleep EEG by wavelet series[J].Beijing Biomedical Engineering,2000,19(1):1-5
    [7] Sweldems W.The lifting scheme:A construction of second generation wavelet[J].SIAM Journal on Mathematical Analysis,1998,29(2):511-546
    [8] Geva A B,Kerem D H.Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering[J].IEEE Transactions on Biomedical Engineering,1998,45(10):1205-1216
    [9] 沈民奋,孙丽莎,沈凤麟.基于小波变换的动态脑电节律提取[J].数据采集与处理,1999,14(2):183-186 SHEN Minfen,SUN Lisha,SHEN Fenglin.Detection of dynamic EEG rhythms based on wavelet transformation[J].Journal of Data Acquisition & Processing,1999,14(2):183-186
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何敏,郑日荣,阮经文,刘攀.基于小波提升算法的脑电节律提取[J].南京信息工程大学学报(自然科学版),2013,5(1):60-63
HE Min, ZHENG Rirong, RUAN Jingwen, LIU Pan. EEG extraction based on wavelet lifting scheme[J]. Journal of Nanjing University of Information Science & Technology, 2013,5(1):60-63

复制
分享
文章指标
  • 点击次数:1149
  • 下载次数: 2880
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-04-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司