系统辨识(6):多新息辨识理论与方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60973043)


System identification.Part F:Multi-innovation identification theory and methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多新息辨识是系统辨识的一个重要分支.新息是能够改善参数估计精度或状态估计精度的有用信息.首先,详细讨论了线性回归模型的各种多新息辨识方法,包括多新息投影算法、多新息随机梯度算法、多新息遗忘梯度算法、变递推间隔多新息随机梯度算法、多新息最小二乘辨识方法、变递推间隔多新息最小二乘算法等;然后,给出了方程误差类系统、输出误差类系统、输入非线性系统的随机梯度辨识算法、多新息随机梯度算法和多新息最小二乘辨识算法;最后,简单说明了多新息辨识理论可以发展到多新息观测器和多新息卡尔曼滤波理论.

    Abstract:

    Multi-innovation identification is an important branch of system identification.The innovation is the useful information that can improve parameter estimation or state estimation accuracies.This paper discusses various multi-innovation identification methods for linear regression models,including the multi-innovation projection algorithm,the multi-innovation stochastic gradient algorithm,the multi-innovation forgetting gradient algorithm,the interval-varying multi-innovation stochastic gradient algorithm,the multi-innovation least squares algorithm,the interval-varying multi-innovation least squares algorithm,and so on.We give the stochastic gradient algorithm,the multi-innovation stochastic gradient algorithm and the multi-innovation least squares identification algorithm for equation error type systems,output error type systems and input nonlinear systems.Finally,we state that the multi-innovation identification theory can be developed to multi-innovation observer and multi-innovation Kalman filtering theory.

    参考文献
    相似文献
    引证文献
引用本文

丁锋.系统辨识(6):多新息辨识理论与方法[J].南京信息工程大学学报(自然科学版),2012,4(1):1-28
DING Feng. System identification. Part F:Multi-innovation identification theory and methods[J]. Journal of Nanjing University of Information Science & Technology, 2012,4(1):1-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-12-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司