基于平均路径长度的语音识别算法的研究与仿真
作者:

Research and simulation on speech recognition based on average length
Author:
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    提出了一种基于平均路径长度的语音识别算法.采用的识别方法属于小词汇量孤立词语音识别,主要包括端点检测、特征提取和模式识别.首先,在对语音信号预处理的基础上,采用梅尔频率倒谱系数(MFCC)为特征参数提取算法,动态时间规整(DTW)作为识别算法;然后,结合基于平均路径长度的模板训练方法,即采用少量样本,通过计算平均路径长度得到参考模板;最后,采用实验室环境下采集的语音信号进行实验.仿真结果表明:改进后的算法与单个样本训练相比,提高了识别率及鲁棒性;同时,相对于矢量量化(VQ)技术,只需较少的训练样本,降低了算法的复杂度.实验得到了较好的识别效果.

    Abstract:

    This paper designs a DTWbased speech recognition system.The method applied in this paper belongs to the small glossarys isolated words speech recognition,which includes starting & ending point measuring,feature extraction and mode matching.The system takes preprocess of the speech signal,and then adopts the MFCC as a characteristic parameter drawing algorithm,and takes the DTW as the recognition algorithm,uses an improved template training technique to extracts the reference template with only a small quantity of samples by computing the average length.An experiment with speech signal recorded in labenvironment is given to simulate the proposed speech recognition method.The simulation results show that compared with using a single reference template,this method improves the recognition accuracy and the robustness.Furthermore,compared with the VQ,our method needs fewer samples and reduces the complexity of the algorithm.

    参考文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张艳萍 张延盛.基于平均路径长度的语音识别算法的研究与仿真[J].南京信息工程大学学报(自然科学版),2011,(1):62-66
ZHANG Yanping, ZHANG Yansheng. Research and simulation on speech recognition based on average length[J]. Journal of Nanjing University of Information Science & Technology, 2011,(1):62-66

复制
分享
文章指标
  • 点击次数:1513
  • 下载次数: 3202
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-07-10

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司